
Dash Platform
Release latest

thephez

Sep 21, 2023

CONTENTS

1 Platform docs 3
1.1 What is Dash . 3

1.1.1 Key Advantages . 4
1.1.2 Key Features . 4

1.2 What is Dash Platform . 5
1.2.1 Key Advantages . 5
1.2.2 Key Components . 6

1.3 Intro to Testnet . 7
1.3.1 Network Details . 7
1.3.2 Getting involved . 7

1.4 Introduction . 7
1.4.1 Prerequisites . 8
1.4.2 Quickstart . 8

1.5 Connect to a network . 8
1.5.1 Overview . 8
1.5.2 Prerequisites . 8
1.5.3 Connect via Dash SDK . 8
1.5.4 Connect to a Devnet . 9
1.5.5 Connect Directly to DAPI (Optional) . 10

1.6 Create and fund a wallet . 11
1.6.1 Prerequisites . 11

1.7 Code . 11
1.8 What’s Happening . 12
1.9 Next Step . 13
1.10 Identities and names . 13

1.10.1 Register an Identity . 13
1.10.2 Retrieve an identity . 14
1.10.3 Code . 15
1.10.4 Example Identity . 15
1.10.5 What’s Happening . 15
1.10.6 Topup an identity’s balance . 15
1.10.7 Overview . 16
1.10.8 Code . 16
1.10.9 What’s Happening . 16
1.10.10 Update an identity . 17
1.10.11 Prerequisites . 17
1.10.12 Code . 17
1.10.13 What’s Happening . 19
1.10.14 Retrieve an account’s identities . 20
1.10.15 Code . 20

i

1.10.16 What’s Happening . 21
1.10.17 Register a name for an identity . 21
1.10.18 Retrieve a name . 23

1.11 Contracts and documents . 25
1.11.1 Register a data contract . 26
1.11.2 Code . 26
1.11.3 What’s Happening . 35
1.11.4 Retrieve a data contract . 35
1.11.5 Code . 35
1.11.6 Example Data Contract . 36
1.11.7 What’s Happening . 37
1.11.8 Update a data contract . 37
1.11.9 Code . 37
1.11.10 What’s Happening . 38
1.11.11 Submit documents . 39
1.11.12 Code . 39
1.11.13 What’s happening . 40
1.11.14 Retrieve documents . 41
1.11.15 Code . 41
1.11.16 Example Document . 42
1.11.17 What’s happening . 44
1.11.18 Update documents . 44
1.11.19 Code . 44
1.11.20 What’s happening . 45
1.11.21 Delete documents . 46
1.11.22 Code . 46
1.11.23 What’s happening . 47

1.12 Send funds . 47
1.13 Code . 47
1.14 What’s Happening . 48
1.15 Use DAPI client methods . 48

1.15.1 Prerequisites . 49
1.16 Code . 49
1.17 Set up a node . 49

1.17.1 Dash masternode . 49
1.17.2 Dash Core full node . 53

1.18 Decentralized API (DAPI) . 53
1.18.1 Overview . 53
1.18.2 Security . 54
1.18.3 Endpoint Overview . 54

1.19 Platform Protocol (DPP) . 54
1.19.1 Overview . 54
1.19.2 Structure Descriptions . 54
1.19.3 Versions . 55

1.20 Identity . 67
1.20.1 Overview . 67
1.20.2 Identity Management . 67
1.20.3 Credits . 68

1.21 Name Service (DPNS) . 69
1.21.1 Overview . 69
1.21.2 Details . 69

1.22 Drive . 70
1.22.1 Overview . 70
1.22.2 Details . 71

ii

1.23 Platform Consensus . 72
1.23.1 Tendermint . 73
1.23.2 Tenderdash . 74
1.23.3 How Does Tenderdash Differ From Tendermint? . 74

1.24 DashPay . 75
1.24.1 Overview . 75
1.24.2 Details . 75

1.25 Fees . 81
1.25.1 Overview . 81
1.25.2 Costs . 82
1.25.3 Fee Multiplier . 82
1.25.4 Storage Refund . 82
1.25.5 User Tip . 82
1.25.6 Formula . 82

1.26 DAPI Endpoints . 83
1.26.1 JSON-RPC Endpoints . 83
1.26.2 gRPC Endpoints . 83

1.27 Query Syntax . 120
1.27.1 Overview . 120
1.27.2 Where Clause . 121
1.27.3 Query Modifiers . 123
1.27.4 Example query . 124

1.28 Data Contracts . 124
1.28.1 Overview . 124
1.28.2 Documents . 125
1.28.3 Definitions . 129

1.29 Glossary . 130
1.29.1 Application . 130
1.29.2 Application State . 131
1.29.3 Block . 131
1.29.4 Block Reward . 131
1.29.5 ChainLock . 131
1.29.6 Classical Transactions . 131
1.29.7 Coinbase Transaction . 131
1.29.8 Core Chain . 131
1.29.9 Credits . 131
1.29.10 DAPI . 131
1.29.11 DAPI Client . 132
1.29.12 DashPay . 132
1.29.13 DashPay Contact Request . 132
1.29.14 DashPay Contact Info . 132
1.29.15 DashPay Profile . 132
1.29.16 Dash Core . 132
1.29.17 Data Contract . 132
1.29.18 Dash Platform Application . 132
1.29.19 Dash Platform Naming Service (DPNS) . 132
1.29.20 Dash Platform Protocol (DPP) . 133
1.29.21 Decentralized Autonomous Organization (DAO) . 133
1.29.22 Devnet . 133
1.29.23 Direct Settlement Payment Channel (DSPC) . 133
1.29.24 Distributed Key Generation (DKG) . 133
1.29.25 Document . 133
1.29.26 Drive . 133
1.29.27 Layer (1, 2, 3) . 134

iii

1.29.28 Local network . 134
1.29.29 Long Living Masternode Quorum (LLMQ) . 134
1.29.30 Mainnet . 134
1.29.31 Masternode . 134
1.29.32 Platform Chain . 134
1.29.33 Platform State . 134
1.29.34 practical Byzantine Fault Tolerance (pBFT) . 134
1.29.35 Proof of Service (PoSe) . 135
1.29.36 Proof of Work (PoW) . 135
1.29.37 Quorum . 135
1.29.38 Quorum Signature . 135
1.29.39 Regtest . 135
1.29.40 Simple Payment Verification . 135
1.29.41 Special Transactions . 135
1.29.42 State Machine . 135
1.29.43 State Transition . 135
1.29.44 Tenderdash . 136
1.29.45 Testnet . 136
1.29.46 Validator Set . 136

1.30 Frequently Asked Questions . 136
1.30.1 What is Evolution? . 136
1.30.2 How does a DAPI client discover the IP address of masternodes hosting DAPI endpoints? . . 136
1.30.3 Why can’t I connect to DAPI from a page served over HTTPS? 136
1.30.4 Will it be possible to use apps with only an identity, or will a DPNS name have to be registered

first? . 137
1.30.5 Should it be possible to create multiple identities using a single private key? 137
1.30.6 Will DAPI RPCs always be free? How will DoS attacks be mitigated? 137
1.30.7 When I try to load the Dash javascript library, why is there is a syntax error “Invalid regular

expression”? . 137
1.31 Overview . 137

1.31.1 Introduction . 137
1.31.2 Reference Implementation . 137
1.31.3 Release Notes . 138
1.31.4 Topics . 138

1.32 Identity . 138
1.32.1 Identity Overview . 138
1.32.2 Identity State Transition Details . 145

1.33 Data Contract . 154
1.33.1 Data Contract Overview . 154
1.33.2 Data Contract Object . 155
1.33.3 Data Contract State Transition Details . 164

1.34 State Transition . 168
1.34.1 State Transition Overview . 168
1.34.2 State Transition Types . 169
1.34.3 State Transition Signing . 170

1.35 Document . 171
1.35.1 Document Submission . 171
1.35.2 Document Object . 178

1.36 Data Trigger . 179
1.36.1 Data Trigger Overview . 179
1.36.2 Details . 180

1.37 Consensus Errors . 181
1.37.1 Platform Error Codes . 181
1.37.2 Basic . 181

iv

1.37.3 Signature Errors . 185
1.37.4 Fee Errors . 185
1.37.5 State . 185

1.38 Repository Overview . 187
1.38.1 js-dash-sdk . 187
1.38.2 js-dapi-client . 187
1.38.3 dapi . 187
1.38.4 js-dpp . 187
1.38.5 Supporting Repositories . 187
1.38.6 Contract Repositories . 189

1.39 Source Code . 189
1.40 Overview . 189

1.40.1 Install . 189
1.40.2 Licence . 190

1.41 Examples . 190
1.41.1 Fetching an identity from its name . 190
1.41.2 Generate a new mnemonic . 191
1.41.3 Paying to another address . 192
1.41.4 Receive money and display balance . 192
1.41.5 Sign and verify messages . 194
1.41.6 Using a different account . 194

1.42 Getting started . 195
1.42.1 About Schemas . 195
1.42.2 Core concepts . 195
1.42.3 Dash Platform applications . 196
1.42.4 Working with multiple apps . 196
1.42.5 Quick start . 196
1.42.6 TypeScript . 197

1.43 Platform . 198
1.43.1 Platform components . 198

1.44 Usage . 205
1.44.1 DAPI . 205
1.44.2 Dashcore Lib primitives . 205

1.45 Wallet . 208
1.45.1 About Wallet-lib . 208

1.46 Overview . 209
1.46.1 DAPI-Client . 209
1.46.2 Licence . 210

1.47 Quick start . 210
1.47.1 ES5/ES6 via NPM . 210
1.47.2 CDN Standalone . 210
1.47.3 Initialization . 210
1.47.4 Quicknotes . 211

1.48 Usage . 211
1.48.1 DAPIClient . 211
1.48.2 Core . 211
1.48.3 Platform . 216

v

vi

Dash Platform, Release latest

Dash aims to be the most user-friendly and scalable payments-focused cryptocurrency in the world. The Dash network
features instant transaction confirmation, double spend protection, optional privacy equal to that of physical cash, a self-
governing, and a self-funding model driven by incentivized full nodes. While Dash is based on Bitcoin and compatible
with many key components of the Bitcoin ecosystem, its two-tier network structure offers significant improvements
in transaction speed, privacy and governance. This section of the documentation describes these and many more key
features that set Dash apart in the blockchain economy.

Check out the official Dash website to learn how individuals and businesses can use Dash.

User Docs Learn what Dash is and how it works. Topics include how to obtain and store Dash, the governance system,
and masternode setup.

Click to begin

Core Docs Find technical details about the Dash Core blockchain, along with protocol and API
reference material.

Click to begin

Platform Docs Start working with Dash Platform and discover how you can use its powerful capabilities
to power your Web3 project.

Click to begin

CONTENTS 1

https://www.dash.org/
https://www.dash.org/individuals/
https://www.dash.org/businesses/
https://docs.dash.org/en/stable/docs/user/index.html#user-index
https://docs.dash.org/en/stable/docs/user/index.html#user-index
https://docs.dash.org/projects/core/en/stable/docs/index.html#core-index
https://docs.dash.org/projects/core/en/stable/docs/index.html#core-index

Dash Platform, Release latest

2 CONTENTS

CHAPTER

ONE

PLATFORM DOCS

Welcome to the Dash Platform developer documentation. You’ll find guides and documentation to help you start
working with Dash Platform and building decentralized applications based on the Dash cryptocurrency. Let’s jump
right in!

Introduction Background information about Dash

Click to begin

Tutorials Basics of building with Dash Platform

Click to begin

Explanations Descriptions of Dash Platform features

Click to begin

Reference API endpoint details and technical information

Click to begin

Platform Protocol Reference Dash Platform protocol reference

Click to begin

Resources Links to helpful sites and tools

Click to begin

Dash SDK JavaScript SDK documentation

Click to begin

DAPI Client JavaScript DAPI-Client documentation

Click to begin

1.1 What is Dash

Dash is the world’s first and longest-running DAO, a cryptocurrency that has stood the test of time, a truly decentralized
and open source project built without a premine, ICO, or venture capital investment. Dash is the only solution on
the market today developing a decentralized API as an integral part of its Web3 stack, making it the first choice for
developers creating unstoppable apps.

Dash is built on battle-tested technology including Bitcoin and Cosmos Tendermint, and implements cutting-edge
threshold signing features on masternodes to guarantee transaction finality in little more than a second. Dash is fast,

3

https://www.investopedia.com/tech/what-dao/
https://www.investopedia.com/terms/i/initial-coin-offering-ico.asp
https://en.wikipedia.org/wiki/Web3

Dash Platform, Release latest

private, secure, decentralized, and open-source, your first choice for truly decentralized Web3 services and for earning
yield in return for providing infrastructure services.

1.1.1 Key Advantages

Industry Leading Security

The Dash network is the most secure blockchain-based payments network, thanks to technological innovations such as
ChainLocks. This mitigates the risk of 51% attacks, forcing any would-be malicious actor to successfully attack both
the mining layer and the masternode layer. To attack both layers, a malicious actor would have to spend a large amount
of Dash in order to dictate false entries to the blockchain, thereby raising the price of Dash in the process. Therefore,
a successful attack would be cost prohibitive due to the large percentage of Dash’s total market required to attempt it.

Stable and Long Lasting Governance

The Dash decentralized autonomous organization (DAO) is the oldest and most successful example of decentralized
governance. In that regard, one of Dash’s most notable innovations is the creation of a treasury, which funds project
proposals that advance the Dash network and ecosystem. This treasury is funded by 10% of the block reward, which is
a combination of transaction fees collected on the network and newly minted Dash awarded to miners for securing the
blockchain. Nodes that maintain a minimum of 1000 Dash (masternodes) receive voting rights on how to distribute
treasury funds. Voting on project proposals encourages engagement with the overall network and ecosystem, resulting
in numerous projects being funded that advance Dash in terms of technology development, marketing, and business
development.

Established History of Technological Innovation

Most of Dash’s technical innovations are described in greater detail elsewhere in this developer hub. However, its
record speaks for itself with innovations in governance (masternodes, treasury system), security (ChainLocks), usability
(automatic InstantSend), and scalability (long-living masternode quorums).

Instantly Confirmed Transactions

All transactions are automatically sent and received instantly at no extra cost. Transaction security and decentralization
are not compromised, due to the ChainLocks innovation. As a result, using Dash to transact means getting the speed and
fungibility of fiat currency, while simultaneously having the lower costs, privacy, and security of funds of a blockchain-
based network.

1.1.2 Key Features

Masternodes

The most important differentiating feature of the Dash payments network is the concept of a masternode. On a tra-
ditional p2p network, nodes participate equally in the sharing of data and network resources. These nodes are all
compensated equally for their contributions toward preserving the network.

However, the Dash network has a second layer of network participants that provide enhanced functionality in exchange
for greater compensation. This second layer of masternodes is the reason why Dash is the most secure payments
network, and can provide industry-leading features such as instant transaction settlement and usernames.

4 Chapter 1. Platform docs

https://docs.dash.org/en/stable/introduction/features.html#masternodes
https://docs.dash.org/en/stable/introduction/features.html#decentralized-governance
https://docs.dash.org/en/stable/introduction/features.html#chainlocks
https://docs.dash.org/en/stable/introduction/features.html#instantsend

Dash Platform, Release latest

Long-Living Masternode Quorums

Dash’s long-living masternode quorums (LLMQs) are used to facilitate the operation of masternode-provided features
in a decentralized, deterministic way. These LLMQs are deterministic subsets of the overall masternode list that are
formed via a distributed key generation protocol and remain active for long periods of time (e.g. hours to days). The
main task of LLMQs is to perform threshold signing of consensus-related messages for features like InstantSend and
ChainLocks.

InstantSend

InstantSend provides a way to lock transaction inputs and enable secure, instantaneous transactions. Long-living mas-
ternode quorums check whether or not a submitted transaction is valid. If it is valid, the masternodes “lock” the inputs
to that specific transaction and broadcast this information to the network, effectively promising that the transaction will
be included in subsequently mined blocks and not allowing any other transaction to spend any of the locked inputs.

ChainLocks

ChainLocks are a feature provided by the Dash Network which provides certainty when accepting payments. This
technology, particularly when used in parallel with InstantSend, creates an environment in which payments can be
accepted immediately and without the risk of “Blockchain Reorganization Events”.

The risk of blockchain reorganization is typically addressed by requiring multiple “confirmations” before a transaction
can be safely accepted as payment. This type of indirect security is effective, but at a cost of time and user experience.
ChainLocks are a solution for this problem.

Proof-of-Service

The Proof of Service (PoSe) scoring system helps incentivize masternodes to provide network services. Masternodes
that fail to participate in quorums that provide core services are penalized, which eventually results in them being
excluded from masternode payment eligibility.

1.2 What is Dash Platform

Dash Platform is a Web3 technology stack for building decentralized applications on the Dash network. The two main
architectural components, Drive and DAPI , turn the Dash P2P network into a cloud that developers can integrate with
their applications.

1.2.1 Key Advantages

Decentralized Cloud Storage

Store your application data in the safest place on the Internet. All data stored on the Dash network is protected by
Dash’s consensus algorithm, ensuring data integrity and availability.

1.2. What is Dash Platform 5

https://docs.dash.org/projects/core/en/stable/docs/guide/dash-features-masternode-quorums.html
https://en.wikipedia.org/wiki/Web3

Dash Platform, Release latest

Reduced Data Silos

Because your application data is stored across many nodes on the Dash network, it is safe and always available for
customers, business partners, and investors.

Client Libraries

Write code and integrate with Dash Platform using the languages that matter to your business. Don’t worry about
understanding blockchain infrastructure: a growing number of client libraries abstract away the complexity typically
associated with working on blockchain-based networks.

Instant Data Confirmation

Unlike many blockchain-based networks, data stored on the platform is instantly confirmed by the Dash consensus
algorithm to ensure the best user experience for users. With Dash Platform, you can gain the advantages of a blockchain-
based storage network without the usual UX compromises.

1.2.2 Key Components

DAPI - A decentralized API

DAPI is a decentralized HTTP API exposing JSON-RPC and gRPC endpoints. Through these endpoints, developers
can send and retrieve application data and query the Dash blockchain.

DAPI provides developers the same access and security as running their own Dash node without the cost and mainte-
nance overhead. Unlike traditional APIs which have a single point of failure, DAPI allows clients to connect to different
instances depending on resource availability in the Dash network.

Developers can connect to DAPI directly or use a client library. This initial client library, dapi-client, is a relatively
simple API wrapper developed by Dash Core Group to provide function calls to the DAPI endpoints.

The source for both DAPI and dapi-client are available on GitHub:

• DAPI: https://github.com/dashpay/platform/tree/master/packages/dapi

• DAPI-Client: https://github.com/dashpay/platform/tree/master/packages/js-dapi-client

Drive - Decentralized Storage

Drive is Dash Platform’s storage component, allowing for consensus-based verification and validation of user-created
data. In order for this to occur, developers create a data contract. This data contract describes the data structures that
comprise an application, similar to creating a schema for a document-oriented database like MongoDB.

Data created by users of the application is validated and verified against this contract. Upon successful valida-
tion/verification, application data is submitted to Drive (via DAPI), where it is stored on the masternode network.
Drive uses Dash’s purpose-built database, GroveDB, to provide efficient proofs with query responses, so you don’t
have to trust the API provider to be certain your data is authentic.

The source is available on GitHub:

• Drive: https://github.com/dashpay/platform/tree/master/packages/js-drive

6 Chapter 1. Platform docs

https://www.jsonrpc.org/
https://grpc.io/
https://github.com/dashpay/platform/tree/master/packages/dapi
https://github.com/dashpay/platform/tree/master/packages/js-dapi-client
https://github.com/dashevo/grovedb/
https://github.com/dashpay/platform/tree/master/packages/js-drive

Dash Platform, Release latest

1.3 Intro to Testnet

Testnet is the Dash testing network used for experimentation and evaluation of Dash Core and Dash Platform features.
As a testing network, Testnet may be subject to occasional updates and changes that break backwards compatibility.

1.3.1 Network Details

Infrastructure

Dash Core Group provides the core Testnet infrastructure consisting of 150 masternodes running Dash Core along with
the platform services that provide the decentralized API (DAPI) and storage (Drive) functionality.

Testnet also includes a block explorer for the core blockchain and a test Dash faucet that dispenses funds to
users/developers experimenting on the network.

Features

The Dash Platform features available on testnet include:

• Dash Platform Name Service (DPNS): a data contract and supporting logic for name registration

• Identities: creation of identities

• Names: creation of DPNS names that link to an identity

• Data Contracts: creation of data contracts

• Documents: used to store/update/delete data associated with data contracts

• DashPay: a data contract enableing a decentralized application that creates bidirectional direct settlement pay-
ment channels between identities and supports contact (name) based payments

1.3.2 Getting involved

This network is open for all who are interested in testing and interacting with Dash Platform. To learn how to connect,
please jump to the Connecting to a Network tutorial.

1.4 Introduction

The tutorials in this section walk through the steps necessary to begin building on Dash Platform using the Dash
JavaScript SDK. As all communication happens via the masternode hosted decentralized API (DAPI), you can begin
using Dash Platform immediately without running a local blockchain node.

Building on Dash Platform requires first registering an Identity and then registering a Data Contract describing the
schema of data to be stored. Once that is done, data can be stored and updated by submitting Documents that comply
with the Data Contract.

Tutorial code

You can clone a repository containing the code for all tutorials from GitHub or download it as a zip file.

1.3. Intro to Testnet 7

https://testnet-insight.dashevo.org/insight/
https://testnet-faucet.dash.org/
https://github.com/dashevo/platform-readme-tutorials/archive/refs/heads/main.zip

Dash Platform, Release latest

1.4.1 Prerequisites

The tutorials in this section are written in JavaScript and use Node.js. The following prerequisites are necessary to
complete the tutorials:

• Node.js (v12+)

• Familiarity with JavaScript asynchronous functions using async/await

• The Dash JavaScript SDK (see Connecting to a Network)

1.4.2 Quickstart

While going through each tutorial is advantageous, the subset of tutorials listed below get you from a start to storing
data on Dash Platform most quickly:

• Obtaining test funds

• Registering an Identity

• Registering a Data Contract

• Submitting data

1.5 Connect to a network

The purpose of this tutorial is to walk through the steps necessary to access the network.

1.5.1 Overview

Platform services are provided via a combination of HTTP and gRPC connections to DAPI, and some connections to
an Insight API. Although one could interact with DAPI by connecting to these directly, or by using DAPI-client, the
easiest approach is to use the JavaScript Dash SDK. The Dash SDK connects to the testnet by default.

1.5.2 Prerequisites

• An installation of NodeJS v12 or higher

1.5.3 Connect via Dash SDK

1. Install the Dash SDK

The JavaScript SDK package is available from npmjs.com and can be installed by running npm install dash from
the command line:

npm install dash

8 Chapter 1. Platform docs

https://nodejs.org/en/about/
https://nodejs.org/en/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await
https://github.com/dashevo/platform/tree/master/packages/js-dapi-client
https://github.com/dashevo/platform/tree/master/packages/js-dash-sdk
https://nodejs.org/en/download/

Dash Platform, Release latest

2. Connect to Dash Platform

Create a file named dashConnect.js with the following contents. Then run it by typing node dashConnect.js
from the command line:

const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

async function connect() {
return await client.getDAPIClient().core.getBestBlockHash();

}

connect()
.then((d) => console.log('Connected. Best block hash:\n', d))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Once this returns successfully, you’re ready to begin developing! See the Quickstart for recommended next steps. For
details on all SDK options and methods, please refer to the SDK documentation.

1.5.4 Connect to a Devnet

The SDK also supports connecting to development networks (devnets). Since devnets can be created by anyone, the
client library will be unaware of them unless connection information is provided using one of the options described
below.

Connect via Seed

Using a seed node is the preferred method in most cases. The client uses the provided seed node to a retrieve a list of
available masternodes on the network so requests can be spread across the entire network.

const Dash = require('dash');

const client = new Dash.Client({
seeds: [{
host: 'seed-1.testnet.networks.dash.org:1443',

}],
});

async function connect() {
return await client.getDAPIClient().core.getBestBlockHash();

}

connect()
.then((d) => console.log('Connected. Best block hash:\n', d))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

1.5. Connect to a network 9

Dash Platform, Release latest

Connect via Address

Custom addresses may be directly specified via dapiAddresses in cases where it is beneficial to know exactly what
node(s) are being accessed (e.g. debugging, local development, etc.).

const Dash = require('dash');

const client = new Dash.Client({
dapiAddresses: [
'127.0.0.1:3000:3010',
'127.0.0.2:3000:3010',

],
});

async function connect() {
return await client.getDAPIClient().core.getBestBlockHash();

}

connect()
.then((d) => console.log('Connected. Best block hash:\n', d))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

1.5.5 Connect Directly to DAPI (Optional)

Advanced Topic

Normally, the Dash SDK, dapi-client, or another library should be used to interact with DAPI. This may
be helpful for debugging in some cases, but generally is not required.

The example below demonstrates retrieving the hash of the best block hash directly from a DAPI node via command
line and several languages:

SHELL

curl --request POST \
--url https://seed-1.testnet.networks.dash.org:1443/ \
--header 'content-type: application/json' \
--data '{"method":"getBlockHash","id":1,"jsonrpc":"2.0","params":{"height": 100 }}'

PYTHON

import requests

url = "https://seed-1.testnet.networks.dash.org:1443/"

payload = "{\"method\":\"getBlockHash\",\"id\":1,\"jsonrpc\":\"2.0\",\"params\":{\
→˓"height\":100}}"
headers = {'content-type': 'application/json'}

(continues on next page)

10 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

response = requests.request("POST", url, data=payload, headers=headers)

print(response.text)

RUBY

require 'uri'
require 'net/http'

url = URI("https://seed-1.testnet.networks.dash.org:1443/")

http = Net::HTTP.new(url.host, url.port)

request = Net::HTTP::Post.new(url)
request["content-type"] = 'application/json'
request.body = "{\"method\":\"getBlockHash\",\"id\":1,\"jsonrpc\":\"2.0\",\"params\":{\
→˓"height\":100}}"

response = http.request(request)
puts response.read_body

1.6 Create and fund a wallet

In order to make changes on Dash Platform, you need a wallet with a balance. This tutorial explains how to generate a
new wallet, retrieve an address from it, and transfer test funds to the address from a faucet.

1.6.1 Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

1.7 Code

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: null, // this indicates that we want a new wallet to be generated
// if you want to get a new address for an existing wallet
// replace 'null' with an existing wallet mnemonic
offlineMode: true, // this indicates we don't want to sync the chain
// it can only be used when the mnemonic is set to 'null'

},
};

(continues on next page)

1.6. Create and fund a wallet 11

Dash Platform, Release latest

(continued from previous page)

const client = new Dash.Client(clientOpts);

const createWallet = async () => {
const account = await client.getWalletAccount();

const mnemonic = client.wallet.exportWallet();
const address = account.getUnusedAddress();
console.log('Mnemonic:', mnemonic);
console.log('Unused address:', address.address);

};

createWallet()
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

// Handle wallet async errors
client.on('error', (error, context) => {
console.error(`Client error: ${error.name}`);
console.error(context);

});

Mnemonic: thrive wolf habit timber birth service crystal patient tiny depart tower focus
Unused address: yXF7LsyajRvJGX96vPHBmo9Dwy9zEvzkbh

Please save your mnemonic for the next step and for re-use in subsequent tutorials throughout the
documentation.

1.8 What’s Happening

Once we connect, we output the newly generated mnemonic from client.wallet.exportWallet() and an unused
address from the wallet from account.getUnusedAddress().

12 Chapter 1. Platform docs

Dash Platform, Release latest

1.9 Next Step

Using the faucet at https://testnet-faucet.dash.org/, send test funds to the “unused address” from the console output.
You will need to wait until the funds are confirmed to use them. There is a block explorer running at https://testnet-
insight.dashevo.org/insight/ which can be used to check confirmations.

1.10 Identities and names

The following tutorials cover creating and managing identities as well as creating and retrieving names.

• Register an Identity

• Retrieve an Account’s Identities

• Topup an Identity’s Balance

• Register a Name for an Identity

• Retrieve a Name

Tutorial code

You can clone a repository containing the code for all tutorials from GitHub or download it as a zip file.

1.10.1 Register an Identity

The purpose of this tutorial is to walk through the steps necessary to register an identity.

Overview

Identities serve as the basis for interactions with Dash Platform. They consist primarily of a public key used to register
a unique entity on the network. Additional details regarding identities can be found in the Identity description.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: How to Create and Fund a Wallet

Code

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.9. Next Step 13

https://github.com/dashevo/platform-readme-tutorials/archive/refs/heads/main.zip

Dash Platform, Release latest

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {

mnemonic: 'a Dash wallet mnemonic with testnet funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const createIdentity = async () => {
return client.platform.identities.register();

};

createIdentity()
.then((d) => console.log('Identity:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

The Identity will be output to the console. The Identity will need to have one confirmation before it is accessible via
client.platform.identity.get.

Make a note of the returned identity id as it will be used used in subsequent tutorials throughout
the documentation.

What’s Happening

After connecting to the Client, we call platform.identities.register. This will generate a keypair and submit
an Identity Create State Transaction. After the Identity is registered, we output it to the console.

1.10.2 Retrieve an identity

In this tutorial we will retrieve the identity created in the Register an Identity tutorial.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A Dash Platform Identity: Tutorial: Register an Identity

14 Chapter 1. Platform docs

Dash Platform, Release latest

1.10.3 Code

const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

const retrieveIdentity = async () => {
return client.platform.identities.get('an identity ID goes here');

};

retrieveIdentity()
.then((d) => console.log('Identity retrieved:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

1.10.4 Example Identity

The following example response shows a retrieved identity:

{
"protocolVersion":0,
"id":"6Jz8pFZFhssKSTacgQmZP14zGZNnFYZFKSbx4WVAJFy3",
"publicKeys":[

{
"id":0,
"type":0,
"data":"A4zZl0EaRBB6IlDbyR80YUM2l02qqNUCoIizkQxubtxi"

}
],
"balance":10997588,
"revision":0

}

1.10.5 What’s Happening

After we initialize the Client, we request an identity. The platform.identities.get method takes a single argu-
ment: an identity ID. After the identity is retrieved, it is displayed on the console.

1.10.6 Topup an identity’s balance

The purpose of this tutorial is to walk through the steps necessary to add credits to an identity’s balance.

1.10. Identities and names 15

Dash Platform, Release latest

1.10.7 Overview

As users interact with Dash Platform applications, the credit balance associated with their identity will decrease. Even-
tually it will be necessary to topup the balance by converting some Dash to credits. Additional details regarding credits
can be found in the Credits description.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• A Dash Platform Identity: Tutorial: Register an Identity

1.10.8 Code

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with testnet funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const topupIdentity = async () => {
const identityId = 'an identity ID goes here';
const topUpAmount = 1000; // Number of duffs

await client.platform.identities.topUp(identityId, topUpAmount);
return client.platform.identities.get(identityId);

};

topupIdentity()
.then((d) => console.log('Identity credit balance: ', d.balance))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

1.10.9 What’s Happening

After connecting to the Client, we call platform.identities.topUp with an identity ID and a topup amount in
duffs (1 duff = 1000 credits). This creates a lock transaction and increases the identity’s credit balance by the relevant
amount (minus fee). The updated balance is output to the console.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

16 Chapter 1. Platform docs

Dash Platform, Release latest

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.10.10 Update an identity

Since Dash Platform v0.23, it is possible to update identities to add new keys or disable existing ones. Platform retains
disabled keys so that any existing data they signed can still be verified while preventing them from signing new data.

1.10.11 Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• A Dash Platform Identity: Tutorial: Register an Identity

1.10.12 Code

The two examples below demonstrate updating an existing identity to add a new key and disabling an existing key:

The current SDK version signs all state transitions with public key id 1. If it is disabled, the SDK will
be unable to use the identity. Future SDK versions will provide a way to also sign using keys added in an
identity update.

JAVASCRIPT

// Disable identity key
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const updateIdentityDisableKey = async () => {
const identityId = 'an identity ID goes here';
const keyId = 'a public key ID goes here'; // One of the identity's public key IDs

// Retrieve the identity to be updated and the public key to disable
const existingIdentity = await client.platform.identities.get(identityId);
const publicKeyToDisable = existingIdentity.getPublicKeyById(keyId);

const updateDisable = {
(continues on next page)

1.10. Identities and names 17

Dash Platform, Release latest

(continued from previous page)

disable: [publicKeyToDisable],
};

await client.platform.identities.update(existingIdentity, updateDisable);
return client.platform.identities.get(identityId);

}

updateIdentityDisableKey()
.then((d) => console.log('Identity updated:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

JAVASCRIPT

// Add identity key
const Dash = require('dash');
const { IdentityPublicKey, IdentityPublicKeyWithWitness } = require('@dashevo/wasm-dpp');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const updateIdentityAddKey = async () => {
const identityId = 'an identity ID goes here';
const existingIdentity = await client.platform.identities.get(identityId);
const newKeyId = existingIdentity.toJSON().publicKeys.length;

// Get an unused identity index
const account = await client.platform.client.getWalletAccount();
const identityIndex = await account.getUnusedIdentityIndex();

// Get unused private key and construct new identity public key
const { privateKey: identityPrivateKey } =

account.identities.getIdentityHDKeyByIndex(identityIndex, 0);

const identityPublicKey = identityPrivateKey.toPublicKey().toBuffer();

const newPublicKey = new IdentityPublicKeyWithWitness({
id: newKeyId,
type: IdentityPublicKey.TYPES.ECDSA_SECP256K1,
data: identityPublicKey,
purpose: IdentityPublicKey.PURPOSES.AUTHENTICATION,
securityLevel: IdentityPublicKey.SECURITY_LEVELS.CRITICAL,

(continues on next page)

18 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

readOnly: false,
signature: Buffer.alloc(0),

});

const updateAdd = {
add: [newPublicKey],

};

// Submit the update signed with the new key
await client.platform.identities.update(existingIdentity, updateAdd, {
[newPublicKey.getId()]: identityPrivateKey,

});

return client.platform.identities.get(identityId);};
};

updateIdentityAddKey()
.then((d) => console.log('Identity updated:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

1.10.13 What’s Happening

Disabling keys

After we initialize the Client, we retrieve our existing identity and provide the id of one (or more) of the identity keys
to disable. The update is submitted to DAPI using the platform.identities.update method with two arguments:

1. An identity

2. An object containing the key(s) to be disabled

Internally, the method creates a State Transition containing the updated identity, signs the state transition, and submits
the signed state transition to DAPI. After the identity is updated, we output it to the console.

Adding keys

After we initialize the Client, we retrieve our existing identity and set an id for the key to be added. Next, we get an
unused private key from our wallet and use it to derive a public key to add to our identity. The update is submitted to
DAPI using the platform.identities.update method with three arguments:

1. An identity

2. An object containing the key(s) to be added

3. An object containing the id and private key for each public key being added

When adding new public keys, they must be signed using the associated private key to prove ownership of
the keys.

Internally, the method creates a State Transition containing the updated identity, signs the state transition, and submits
the signed state transition to DAPI. After the identity is updated, we output it to the console.

1.10. Identities and names 19

Dash Platform, Release latest

1.10.14 Retrieve an account’s identities

In this tutorial we will retrieve the list of identities associated with a specified mnemonic-based account. Since multiple
identities may be created using the same mnemonic, it is helpful to have a way to quickly retrieve all these identities
(e.g. if importing the mnemonic into a new device).

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic

• A Dash Platform Identity: Tutorial: Register an Identity

1.10.15 Code

const Dash = require('dash');

const client = new Dash.Client({
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with testnet funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

});

const retrieveIdentityIds = async () => {
const account = await client.getWalletAccount();
return account.identities.getIdentityIds();

};

retrieveIdentityIds()
.then((d) => console.log('Mnemonic identities:\n', d))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Example Response

[
"6Jz8pFZFhssKSTacgQmZP14zGZNnFYZFKSbx4WVAJFy3",
"8XoJHG96Vfm3eGh1A7HiDpMb1Jw2B9opRJe8Z38urapt",
"CEPMcuBgAWeaCXiP2gJJaStANRHW6b158UPvL1C8zw2W",
"GTGZrkPC72tWeBaqopSCKgiBkVVQR3s3yBsVeMyUrmiY"

]

20 Chapter 1. Platform docs

Dash Platform, Release latest

1.10.16 What’s Happening

After we initialize the Client and getting the account, we call account.identities.getIdentityIds() to retrieve
a list of all identities created with the wallet mnemonic. The list of identities is output to the console.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.10.17 Register a name for an identity

The purpose of this tutorial is to walk through the steps necessary to register a Dash Platform Name Service (DPNS)
name.

Overview

Dash Platform names make cryptographic identities easy to remember and communicate. An identity may have multiple
alias names (dashAliasIdentityId) in addition to its default name (dashUniqueIdentityId). Additional details
regarding identities can be found in the Identity description.

Note: An identity must have a default name before any aliases can be created for the identity.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• A Dash Platform identity: Tutorial: Register an Identity

• A name you want to register: Name restrictions

Code

The examples below demonstrate creating both the default name and alias names.

Note: the name must be the full domain name including the parent domain (i.e. myname.dash instead of just myname).
Currently dash is the only top-level domain that may be used.

JAVASCRIPT

// Register Name for Identity
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with testnet funds goes here',

(continues on next page)

1.10. Identities and names 21

Dash Platform, Release latest

(continued from previous page)

unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerName = async () => {
const { platform } = client;

const identity = await platform.identities.get('an identity ID goes here');
const nameRegistration = await platform.names.register(
'<identity name goes here>.dash',
{ dashUniqueIdentityId: identity.getId() },
identity,

);

return nameRegistration;
};

registerName()
.then((d) => console.log('Name registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

JAVASCRIPT

// Register Alias for Identity
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with testnet funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerAlias = async () => {
const platform = client.platform;
const identity = await platform.identities.get('an identity ID goes here');
const aliasRegistration = await platform.names.register(
'<identity alias goes here>.dash',
{ dashAliasIdentityId: identity.getId() },
identity,

);

(continues on next page)

22 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

return aliasRegistration;
};

registerAlias()
.then((d) => console.log('Alias registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

What’s Happening

After initializing the Client, we fetch the Identity we’ll be associating with a name. This is an asynchronous method so
we use await to pause until the request is complete. Next, we call platform.names.register and pass in the name
we want to register, the type of identity record to create, and the identity we just fetched. We wait for the result, and
output it to the console.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.10.18 Retrieve a name

In this tutorial we will retrieve the name created in the Register a Name for an Identity tutorial. Additional details
regarding identities can be found in the Identity description.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

Code

JAVASCRIPT

// Resolve by Name
const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

const retrieveName = async () => {
// Retrieve by full name (e.g., myname.dash)
return client.platform.names.resolve('<identity name>.dash');

};

retrieveName()
.then((d) => console.log('Name retrieved:\n', d.toJSON()))

(continues on next page)

1.10. Identities and names 23

Dash Platform, Release latest

(continued from previous page)

.catch((e) => console.error('Something went wrong:\n', e))

.finally(() => client.disconnect());

JAVASCRIPT

// Revolve by Record
const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

const retrieveNameByRecord = async () => {
// Retrieve by a name's identity ID
return client.platform.names.resolveByRecord(
'dashUniqueIdentityId',
'<identity id>',

);
};

retrieveNameByRecord()
.then((d) => console.log('Name retrieved:\n', d[0].toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

JAVASCRIPT

// Search for Name
const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

const retrieveNameBySearch = async () => {
// Search for names (e.g. `user*`)
return client.platform.names.search('user', 'dash');

};

retrieveNameBySearch()
.then((d) => {
for (const name of d) {
console.log('Name retrieved:\n', name.toJSON());

}
})
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

24 Chapter 1. Platform docs

Dash Platform, Release latest

Example Name

The following example response shows a retrieved name (user-9999.dash):

{
"$protocolVersion": 0,
"$id": "4veLBZPHDkaCPF9LfZ8fX3JZiS5q5iUVGhdBbaa9ga5E",
"$type": "domain",
"$dataContractId": "566vcJkmebVCAb2Dkj2yVMSgGFcsshupnQqtsz1RFbcy",
"$ownerId": "HBNMY5QWuBVKNFLhgBTC1VmpEnscrmqKPMXpnYSHwhfn",
"$revision": 1,
"label": "user-9999",
"records": {
"dashUniqueIdentityId": "HBNMY5QWuBVKNFLhgBTC1VmpEnscrmqKPMXpnYSHwhfn"

},
"preorderSalt": "BzQi567XVqc8wYiVHS887sJtL6MDbxLHNnp+UpTFSB0",
"subdomainRules": { "allowSubdomains": false },
"normalizedLabel": "user-9999",
"normalizedParentDomainName": "dash"

}

What’s Happening

After we initialize the Client, we request a name. The code examples demonstrate the three ways to request a name:

1. Resolve by name. The platform.names.resolvemethod takes a single argument: a fully-qualified name (e.g.,
user-9999.dash).

2. Resolve by record. The platform.names.resolveByRecord method takes two arguments: the record type
(e.g., dashUniqueIdentityId) and the record value to resolve.

3. Search. The platform.names.search method takes two arguments: the leading characters of the name to
search for and the domain to search (e.g., dash for names in the *.dash domain). The search will return names
that begin the with string provided in the first parameter.

After the name is retrieved, it is displayed on the console.

1.11 Contracts and documents

The following tutorials cover working with data contracts as well as storing and updating related data using the docu-
ments they define.

• Register a Data Contract

• Retrieve a Data Contract

• Update a Data Contract

• Submit Documents

• Retrieve Documents

• Update Documents

• Delete Documents

1.11. Contracts and documents 25

Dash Platform, Release latest

Tutorial code

You can clone a repository containing the code for all tutorials from GitHub or download it as a zip file.

1.11.1 Register a data contract

In this tutorial we will register a data contract.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• A Dash Platform Identity: Tutorial: Register an Identity

1.11.2 Code

Defining contract documents

As described in the data contract explanation, data contracts must include one or more developer-defined documents.

The most basic example below (tab 1) demonstrates a data contract containing a single document type (note) which
has a single string property (message).

The second tab shows the same data contract with an index defined on the $ownerId field. This would allow querying
for documents owned by a specific identity using a where clause.

The third tab shows a data contract using the JSON-Schema $ref feature that enables reuse of defined objects. Note
that the $ref keyword has been temporarily disabled since Platform v0.22.

The fourth tab shows a data contract requiring the optional $createdAt and $updatedAt base fields. Using these
fields enables retrieving timestamps that indicate when a document was created or modified.

Since Platform v0.23, an index can only use the ascending order (asc). Future updates will remove this
restriction.

JSON

// 1. Minimal contract
{
"note": {
"type": "object",
"properties": {
"message": {
"type": "string"

}
},
"additionalProperties": false

}
}

26 Chapter 1. Platform docs

https://github.com/dashevo/platform-readme-tutorials/archive/refs/heads/main.zip
https://json-schema.org/understanding-json-schema/structuring.html#reuse
https://github.com/dashevo/platform/pull/300
https://github.com/dashevo/platform/pull/435

Dash Platform, Release latest

JSON

// 2. Indexed
{
"note": {
"type": "object",
"indices": [
{
"name": "ownerId",
"properties": [{ "$ownerId": "asc" }], "unique": false }

],
"properties": {
"message": {
"type": "string"

}
},
"additionalProperties": false

}
}

/*
An identity's documents are accessible via a query including a where clause like:
{
where: [['$ownerId', '==', 'an identity id']],

}
*/

JSON

// 3. References ($ref)
// NOTE: The `$ref` keyword is temporarily disabled for Platform v0.22.
{
"customer": {
"type": "object",
"properties": {
"name": { "type": "string" },
"billing_address": { "$ref": "#/$defs/address" },
"shipping_address": { "$ref": "#/$defs/address" }

},
"additionalProperties": false

}
}

/*
The contract document defined above is dependent on the following object
being added to the contract via the contracts `.setDefinitions` method:

{
address: {
type: "object",
properties: {

(continues on next page)

1.11. Contracts and documents 27

Dash Platform, Release latest

(continued from previous page)

street_address: { type: "string" },
city: { type: "string" },
state: { type: "string" }

},
required: ["street_address", "city", "state"],
additionalProperties: false

}
}
*/

JSON

// 4. Timestamps
{
"note": {
"type": "object",
"properties": {
"message": {
"type": "string"

}
},
"required": ["$createdAt", "$updatedAt"],
"additionalProperties": false

}
}

/*
If $createdAt and/or $updatedAt are added to the list of required properties
for a document, all documents of that type will store a timestamp indicating
when the document was created or modified.

This information will be returned when the document is retrieved.
*/

JSON

// 5. Binary data
{
"block": {
"type": "object",
"properties": {
"hash": {
"type": "array",
"byteArray": true,
"maxItems": 64,
"description": "Store block hashes"

}
},
"additionalProperties": false

(continues on next page)

28 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

}
}

/*
Setting `"byteArray": true` indicates that the provided data will be an
array of bytes (e.g. a NodeJS Buffer).
*/

Please refer to the data contract reference page for more comprehensive details related to contracts and
documents.

Registering the data contract

The following examples demonstrate the details of creating contracts using the features described above:

JAVASCRIPT

// 1. Minimal contract
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerContract = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

const contractDocuments = {
note: {
type: 'object',
properties: {
message: {
type: 'string',

},
},
additionalProperties: false,

},
};

const contract = await platform.contracts.create(contractDocuments, identity);
console.dir({ contract: contract.toJSON() });

(continues on next page)

1.11. Contracts and documents 29

Dash Platform, Release latest

(continued from previous page)

// Make sure contract passes validation checks
const validationResult = await platform.dpp.dataContract.validate(contract);

if (validationResult.isValid()) {
console.log('Validation passed, broadcasting contract..');
// Sign and submit the data contract
return platform.contracts.publish(contract, identity);

}
console.error(validationResult); // An array of detailed validation errors
throw validationResult.errors[0];

};

registerContract()
.then((d) => console.log('Contract registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

JAVASCRIPT

// 2. Indexed
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerContract = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

const contractDocuments = {
note: {
type: 'object',
indices: [{
name: 'ownerId',
properties: [{ $ownerId: 'asc' }],
unique: false,

}],
properties: {
message: {
type: 'string',

},
(continues on next page)

30 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

},
additionalProperties: false,

},
};

const contract = await platform.contracts.create(contractDocuments, identity);
console.dir({ contract: contract.toJSON() });

// Make sure contract passes validation checks
const validationResult = await platform.dpp.dataContract.validate(contract);

if (validationResult.isValid()) {
console.log('Validation passed, broadcasting contract..');
// Sign and submit the data contract
return platform.contracts.publish(contract, identity);

}
console.error(validationResult); // An array of detailed validation errors
throw validationResult.errors[0];

};

registerContract()
.then((d) => console.log('Contract registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

JAVASCRIPT

// 3. References ($ref)
// NOTE: The `$ref` keyword is temporarily disabled for Platform v0.22.
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerContract = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

// Define a reusable object
const definitions = {
address: {
type: 'object',

(continues on next page)

1.11. Contracts and documents 31

Dash Platform, Release latest

(continued from previous page)

properties: {
street_address: { type: 'string' },
city: { type: 'string' },
state: { type: 'string' },

},
required: ['street_address', 'city', 'state'],
additionalProperties: false,

},
};

// Create a document with properties using a definition via $ref
const contractDocuments = {
customer: {
type: 'object',
properties: {
name: { type: 'string' },
billing_address: { $ref: '#/$defs/address' },
shipping_address: { $ref: '#/$defs/address' },

},
additionalProperties: false,

},
};

const contract = await platform.contracts.create(contractDocuments, identity);

// Add reusable definitions referred to by "$ref" to contract
contract.setDefinitions(definitions);
console.dir({ contract: contract.toJSON() });

// Make sure contract passes validation checks
const validationResult = await platform.dpp.dataContract.validate(contract);

if (validationResult.isValid()) {
console.log('Validation passed, broadcasting contract..');
// Sign and submit the data contract
return platform.contracts.publish(contract, identity);

}
console.error(validationResult); // An array of detailed validation errors
throw validationResult.errors[0];

};

registerContract()
.then((d) => console.log('Contract registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

32 Chapter 1. Platform docs

Dash Platform, Release latest

JAVASCRIPT

// 4. Timestamps
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerContract = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

const contractDocuments = {
note: {
type: 'object',
properties: {
message: {
type: 'string',

},
},
required: ['$createdAt', '$updatedAt'],
additionalProperties: false,

},
};

const contract = await platform.contracts.create(contractDocuments, identity);
console.dir({ contract: contract.toJSON() });

// Make sure contract passes validation checks
const validationResult = await platform.dpp.dataContract.validate(contract);

if (validationResult.isValid()) {
console.log('Validation passed, broadcasting contract..');
// Sign and submit the data contract
return platform.contracts.publish(contract, identity);

}
console.error(validationResult); // An array of detailed validation errors
throw validationResult.errors[0];

};

registerContract()
.then((d) => console.log('Contract registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

1.11. Contracts and documents 33

Dash Platform, Release latest

JAVASCRIPT

// 5. Binary data
const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
const client = new Dash.Client(clientOpts);

const registerContract = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

const contractDocuments = {
block: {
type: 'object',
properties: {
hash: {
type: 'array',
byteArray: true,
maxItems: 64,
description: 'Store block hashes',

},
},
additionalProperties: false,

},
};

const contract = await platform.contracts.create(contractDocuments, identity);
console.dir({ contract: contract.toJSON() }, { depth: 5 });

// Make sure contract passes validation checks
const validationResult = await platform.dpp.dataContract.validate(contract);

if (validationResult.isValid()) {
console.log('Validation passed, broadcasting contract..');
// Sign and submit the data contract
return platform.contracts.publish(contract, identity);

}
console.error(validationResult); // An array of detailed validation errors
throw validationResult.errors[0];

};

registerContract()
.then((d) => console.log('Contract registered:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))

(continues on next page)

34 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

.finally(() => client.disconnect());

Make a note of the returned data contract $id as it will be used used in subsequent tutorials through-
out the documentation.

1.11.3 What’s Happening

After we initialize the Client, we create an object defining the documents this data contract requires (e.g. a note
document in the example). The platform.contracts.create method takes two arguments: a contract definitions
JSON-schema object and an identity. The contract definitions object consists of the document types being created (e.g.
note). It defines the properties and any indices.

Once the data contract has been created, we still need to submit it to DAPI. The platform.contracts.publish
method takes a data contract and an identity parameter. Internally, it creates a State Transition containing the previously
created contract, signs the state transition, and submits the signed state transition to DAPI. A response will only be
returned if an error is encountered.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.11.4 Retrieve a data contract

In this tutorial we will retrieve the data contract created in the Register a Data Contract tutorial.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A Dash Platform Contract ID: Tutorial: Register a Data Contract

1.11.5 Code

Retrieving a data contract

const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

const retrieveContract = async () => {
const contractId = '3iaEhdyAVbmSjd59CT6SCrqPjfAfMdPTc8ksydgqSaWE';
return client.platform.contracts.get(contractId);

};

(continues on next page)

1.11. Contracts and documents 35

Dash Platform, Release latest

(continued from previous page)

retrieveContract()
.then((d) => console.dir(d.toJSON(), { depth: 5 }))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Updating the client app list

In many cases it may be desirable to work with a newly retrieved data contract using the <contract
name>.<contract document> syntax (e.g. dpns.domain). Data contracts that were created after the
client was initialized or not included in the initial client options can be added via client.getApps().
set(...).

const Dash = require('dash');
const { PlatformProtocol: { Identifier } } = Dash;

const myContractId = 'a contract ID';
const client = new Dash.Client();

client.platform.contracts.get(myContractId)
.then((myContract) => {
client.getApps().set('myNewContract', {
contractId: Identifier.from(myContractId),
contract: myContract,

});
});

1.11.6 Example Data Contract

The following example response shows a retrieved contract:

{
"protocolVersion":1,
"$id":"G1FVmxxrnbT6CiQU7w2xgY9oMMqkkZb7vS6fkeRrSTXG",
"$schema":"https://schema.dash.org/dpp-0-4-0/meta/data-contract",
"version":2,
"ownerId":"8uFQj2ptknrcwykhQbTzQatoQUyxn4VJQn1J25fxeDvk",
"documents":{
"note":{
"type":"object",
"properties":{
"author":{
"type":"string"

},
"message":{
"type":"string"

}
},
"additionalProperties":false

(continues on next page)

36 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

}
}

}

Please refer to the data contract reference page for more comprehensive details related to contracts and
documents.

1.11.7 What’s Happening

After we initialize the Client, we request a contract. The platform.contracts.get method takes a single argument:
a contract ID. After the contract is retrieved, it is displayed on the console.

The second code example shows how the contract could be assigned a name to make it easily accessible without
initializing an additional client.

1.11.8 Update a data contract

Since Dash Platform v0.22, it is possible to update existing data contracts in certain backwards-compatible ways. This
includes:

• Adding new documents

• Adding new optional properties to existing documents

• Adding non-unique indices for properties added in the update.

In this tutorial we will update an existing data contract.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• A Dash Platform Identity: Tutorial: Register an Identity

• A Dash Platform Contract ID: Tutorial: Register a Data Contract

1.11.9 Code

The following example demonstrates updating an existing contract to add a new property to an existing document:

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
(continues on next page)

1.11. Contracts and documents 37

Dash Platform, Release latest

(continued from previous page)

},
};
const client = new Dash.Client(clientOpts);

const updateContract = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

const existingDataContract = await platform.contracts.get('a contract ID goes here');
const documents = existingDataContract.getDocuments();

documents.note.properties.author = {
type: 'string',

};

existingDataContract.setDocuments(documents);

// Make sure contract passes validation checks
const validationResult = await platform.dpp.dataContract.validate(

existingDataContract,
);

if (validationResult.isValid()) {
console.log('Validation passed, broadcasting contract..');
// Sign and submit the data contract
return platform.contracts.update(existingDataContract, identity);

}
console.error(validationResult); // An array of detailed validation errors
throw validationResult.errors[0];

};

updateContract()
.then((d) => console.log('Contract updated:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Please refer to the data contract reference page for more comprehensive details related to contracts and
documents.

1.11.10 What’s Happening

After we initialize the Client, we retrieve an existing contract owned by our identity. We then get the contract’s docu-
ments and modify a document (adding an author property to the note document in the example).The setDocuments
method takes one argument: the object containing the updated document types.

Once the data contract has been updated, we still need to submit it to DAPI. The platform.contracts.update
method takes a data contract and an identity parameter. Internally, it creates a State Transition containing the updated
contract, signs the state transition, and submits the signed state transition to DAPI. A response will only be returned if
an error is encountered.

Wallet Operations

38 Chapter 1. Platform docs

Dash Platform, Release latest

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.11.11 Submit documents

In this tutorial we will submit some data to an application on Dash Platform. Data is stored in the form of documents
which are encapsulated in a state transition before being submitted to DAPI.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• A Dash Platform Identity: Tutorial: Register an Identity

• A Dash Platform Contract ID: Tutorial: Register a Data Contract

1.11.12 Code

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},
apps: {
tutorialContract: {
contractId: '3iaEhdyAVbmSjd59CT6SCrqPjfAfMdPTc8ksydgqSaWE',

},
},

};
const client = new Dash.Client(clientOpts);

const submitNoteDocument = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');

const docProperties = {
message: `Tutorial Test @ ${new Date().toUTCString()}`,

};

// Create the note document
const noteDocument = await platform.documents.create(

(continues on next page)

1.11. Contracts and documents 39

Dash Platform, Release latest

(continued from previous page)

'tutorialContract.note',
identity,
docProperties,

);

const documentBatch = {
create: [noteDocument], // Document(s) to create
replace: [], // Document(s) to update
delete: [], // Document(s) to delete

};
// Sign and submit the document(s)
return platform.documents.broadcast(documentBatch, identity);

};

submitNoteDocument()
.then((d) => console.log(d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Initializing the Client with a contract identity

The example above shows how access to contract documents via <contract name>.<contract
document> syntax (e.g. tutorialContract.note) can be enabled by passing a contract identity to
the constructor. Please refer to the Dash SDK documentation for details.

1.11.13 What’s happening

After we initialize the Client, we create a document that matches the structure defined by the data contract of the
application being referenced (e.g. a note document for the contract registered in the data contract tutorial). The
platform.documents.create method takes three arguments: a document locator, an identity, and the document
data. The document locator consists of an application name (e.g. tutorialContract) and the document type being
created (e.g. note). The document data should contain values for each of the properties defined for it in the data
contract (e.g. message for the tutorial contract’s note).

Once the document has been created, we still need to submit it to DAPI . Documents are submitted in batches that may
contain multiple documents to be created, replaced, or deleted. In this example, a single document is being created.
The documentBatch object defines the action to be completed for the document (the empty action arrays - replace
and delete in this example - may be excluded and are shown for reference only here).

The platform.documents.broadcast method then takes the document batch and an identity parameter. Internally,
it creates a State Transition containing the previously created document, signs the state transition, and submits the
signed state transition to DAPI.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

40 Chapter 1. Platform docs

https://github.com/dashevo/platform/blob/master/packages/js-dash-sdk/docs/getting-started/multiple-apps.md

Dash Platform, Release latest

1.11.14 Retrieve documents

In this tutorial we will retrieve some of the current data from a data contract. Data is stored in the form of documents
as described in the Dash Platform Protocol Document explanation.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A Dash Platform Contract ID: Tutorial: Register a Data Contract

1.11.15 Code

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
apps: {
tutorialContract: {
contractId: '3iaEhdyAVbmSjd59CT6SCrqPjfAfMdPTc8ksydgqSaWE',

},
},

};
const client = new Dash.Client(clientOpts);

const getDocuments = async () => {
return client.platform.documents.get('tutorialContract.note', {
limit: 2, // Only retrieve 2 document

});
};

getDocuments()
.then((d) => {
for (const n of d) {

console.log('Document:\n', n.toJSON());
}

})
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Initializing the Client with a contract identity

The example above shows how access to contract documents via <contract name>.<contract
document> syntax (e.g. tutorialContract.note) can be enabled by passing a contract identity to
the constructor. Please refer to the Dash SDK documentation for details.

1.11. Contracts and documents 41

https://github.com/dashevo/platform/blob/master/packages/js-dash-sdk/docs/getting-started/multiple-apps.md

Dash Platform, Release latest

Queries

The example code uses a very basic query to return only one result. More extensive querying capabilities are covered
in the query syntax reference.

1.11.16 Example Document

The following examples show the structure of a note document (from the data contract registered in the tutorial)
returned from the SDK when retrieved with various methods.

The values returned by .toJSON() include the base document properties (prefixed with $) present in all documents
along with the data contract defined properties.

Note: When using .toJSON(), binary data is displayed as a base64 string (since JSON is a text-based
format).

The values returned by .getData() (and also shown in the console.dir() data property) represent only the properties
defined in the note document described by the tutorial data contract.

JSON

// .toJSON()
{
"$protocolVersion": 0,
"$id": "6LpCQhkXYV2vqkv1UWByew4xQ6BaxxnGkhfMZsN3SV9u",
"$type": "note",
"$dataContractId": "3iaEhdyAVbmSjd59CT6SCrqPjfAfMdPTc8ksydgqSaWE",
"$ownerId": "CEPMcuBgAWeaCXiP2gJJaStANRHW6b158UPvL1C8zw2W",
"$revision": 1,
"message": "Tutorial CI Test @ Fri, 23 Jul 2021 13:12:13 GMT"

}

JSON

// .getData()
{
"Tutorial CI Test @ Fri, 23 Jul 2021 13:12:13 GMT"

}

TEXT

.data.message
Tutorial CI Test @ Fri, 23 Jul 2021 13:12:13 GMT

42 Chapter 1. Platform docs

Dash Platform, Release latest

JSON

// console.dir(document)
Document {
dataContract: DataContract {
protocolVersion: 0,
id: Identifier(32) [Uint8Array] [

40, 93, 196, 112, 38, 188, 51, 122,
149, 59, 21, 39, 147, 119, 87, 53,
236, 60, 97, 42, 31, 82, 135, 120,
68, 188, 55, 153, 226, 198, 181, 139

],
ownerId: Identifier(32) [Uint8Array] [
166, 222, 98, 87, 193, 19, 82, 37,
50, 118, 210, 64, 103, 122, 28, 155,

168, 21, 198, 134, 142, 151, 153, 136,
46, 64, 223, 74, 215, 153, 158, 167

],
schema: 'https://schema.dash.org/dpp-0-4-0/meta/data-contract',
documents: { note: [Object] },
'$defs': undefined,
binaryProperties: { note: {} },
metadata: Metadata { blockHeight: 526, coreChainLockedHeight: 542795 }

},
entropy: undefined,
protocolVersion: 0,
id: Identifier(32) [Uint8Array] [

79, 93, 213, 226, 76, 79, 205, 191,
165, 190, 68, 28, 8, 83, 61, 226,
222, 248, 48, 235, 147, 110, 181, 229,
7, 66, 65, 230, 100, 194, 192, 156

],
type: 'note',
dataContractId: Identifier(32) [Uint8Array] [

40, 93, 196, 112, 38, 188, 51, 122,
149, 59, 21, 39, 147, 119, 87, 53,
236, 60, 97, 42, 31, 82, 135, 120,
68, 188, 55, 153, 226, 198, 181, 139

],
ownerId: Identifier(32) [Uint8Array] [
166, 222, 98, 87, 193, 19, 82, 37,
50, 118, 210, 64, 103, 122, 28, 155,
168, 21, 198, 134, 142, 151, 153, 136,
46, 64, 223, 74, 215, 153, 158, 167

],
revision: 1,
data: { message: 'Tutorial CI Test @ Fri, 23 Jul 2021 13:12:13 GMT' },
metadata: Metadata { blockHeight: 526, coreChainLockedHeight: 542795 }

}

1.11. Contracts and documents 43

Dash Platform, Release latest

1.11.17 What’s happening

After we initialize the Client, we request some documents. The client.platform.documents.getmethod takes two
arguments: a record locator and a query object. The records locator consists of an app name (e.g. tutorialContract)
and the top-level document type requested, (e.g. note).

DPNS Contract

Note: Access to the DPNS contract is built into the Dash SDK. DPNS documents may be accessed via the
dpns app name (e.g. dpns.domain).

If you need more than the first 100 documents, you’ll have to make additional requests with startAt incremented by
100 each time. In the future, the Dash SDK may return documents with paging information to make this easier and
reveal how many documents are returned in total.

1.11.18 Update documents

In this tutorial we will update existing data on Dash Platform. Data is stored in the form of documents which are
encapsulated in a state transition before being submitted to DAPI.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• Access to a previously created document (e.g., one created using the Submit Documents tutorial)

1.11.19 Code

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},
apps: {
tutorialContract: {
contractId: '3iaEhdyAVbmSjd59CT6SCrqPjfAfMdPTc8ksydgqSaWE',

},
},

};
const client = new Dash.Client(clientOpts);

const updateNoteDocument = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');
const documentId = 'an existing document ID goes here';

(continues on next page)

44 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

// Retrieve the existing document
const [document] = await client.platform.documents.get(
'tutorialContract.note',
{ where: [['$id', '==', documentId]] },

);

// Update document
document.set('message', `Updated document @ ${new Date().toUTCString()}`);

// Sign and submit the document replace transition
return platform.documents.broadcast({ replace: [document] }, identity);

};

updateNoteDocument()
.then((d) => console.log('Document updated:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Initializing the Client with a contract identity

The example above shows how access to contract documents via <contract name>.<contract
document> syntax (e.g. tutorialContract.note) can be enabled by passing a contract identity to
the constructor. Please refer to the Dash SDK documentation for details.

1.11.20 What’s happening

After we initialize the Client, we retrieve the document to be updated via platform.documents.get using its id.
Once the document has been retrieved, we must submit it to DAPI with the desired data updates. Documents are
submitted in batches that may contain multiple documents to be created, replaced, or deleted. In this example, a single
document is being updated.

The platform.documents.broadcast method then takes the document batch (e.g. {replace:
[noteDocument]}) and an identity parameter. Internally, it creates a State Transition containing the previously
created document, signs the state transition, and submits the signed state transition to DAPI.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.11. Contracts and documents 45

https://github.com/dashevo/platform/blob/master/packages/js-dash-sdk/docs/getting-started/multiple-apps.md

Dash Platform, Release latest

1.11.21 Delete documents

In this tutorial we will update delete data from Dash Platform. Data is stored in the form of documents which are
encapsulated in a state transition before being submitted to DAPI.

Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

• A wallet mnemonic with some funds in it: Tutorial: Create and Fund a Wallet

• Access to a previously created document (e.g., one created using the Submit Documents tutorial)

1.11.22 Code

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'a Dash wallet mnemonic with funds goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},
apps: {
tutorialContract: {
contractId: '3iaEhdyAVbmSjd59CT6SCrqPjfAfMdPTc8ksydgqSaWE',

},
},

};
const client = new Dash.Client(clientOpts);

const deleteNoteDocument = async () => {
const { platform } = client;
const identity = await platform.identities.get('an identity ID goes here');
const documentId = 'an existing document ID goes here';

// Retrieve the existing document
const [document] = await client.platform.documents.get(
'tutorialContract.note',
{ where: [['$id', '==', documentId]] },

);

// Sign and submit the document delete transition
return platform.documents.broadcast({ delete: [document] }, identity);

};

deleteNoteDocument()
.then((d) => console.log('Document deleted:\n', d.toJSON()))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

46 Chapter 1. Platform docs

Dash Platform, Release latest

Initializing the Client with a contract identity

The example above shows how access to contract documents via <contract name>.<contract
document> syntax (e.g. tutorialContract.note) can be enabled by passing a contract identity to
the constructor. Please refer to the Dash SDK documentation for details.

1.11.23 What’s happening

After we initialize the Client, we retrieve the document to be deleted via platform.documents.get using its id.

Once the document has been retrieved, we must submit it to DAPI . Documents are submitted in batches that may
contain multiple documents to be created, replaced, or deleted. In this example, a single document is being deleted.

The platform.documents.broadcast method takes the document batch (e.g. {delete: [documents[0]]})
and an identity parameter. Internally, it creates a State Transition containing the previously created document, signs
the state transition, and submits the signed state transition to DAPI.

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

1.12 Send funds

Once you have a wallet and some funds (tutorial), another common task is sending Dash to an address. (Sending Dash
to a contact or a DPNS identity requires the Dashpay app, which has not been registered yet.)

1.13 Code

Wallet Operations

The JavaScript SDK does not cache wallet information. It re-syncs the entire Core chain for some wallet
operations (e.g. client.getWalletAccount()) which can result in wait times of 5+ minutes.

A future release will add caching so that access is much faster after the initial sync. For now, the
skipSynchronizationBeforeHeight option can be used to sync the wallet starting at a certain block
height.

const Dash = require('dash');

const clientOpts = {
network: 'testnet',
wallet: {
mnemonic: 'your wallet mnemonic goes here',
unsafeOptions: {
skipSynchronizationBeforeHeight: 650000, // only sync from early-2022

},
},

};
(continues on next page)

1.12. Send funds 47

https://github.com/dashevo/platform/blob/master/packages/js-dash-sdk/docs/getting-started/multiple-apps.md

Dash Platform, Release latest

(continued from previous page)

const client = new Dash.Client(clientOpts);

const sendFunds = async () => {
const account = await client.getWalletAccount();

const transaction = account.createTransaction({
recipient: 'yP8A3cbdxRtLRduy5mXDsBnJtMzHWs6ZXr', // Testnet2 faucet
satoshis: 100000000, // 1 Dash

});
return account.broadcastTransaction(transaction);

};

sendFunds()
.then((d) => console.log('Transaction broadcast!\nTransaction ID:', d))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

// Handle wallet async errors
client.on('error', (error, context) => {
console.error(`Client error: ${error.name}`);
console.error(context);

});

1.14 What’s Happening

After initializing the Client, we build a new transaction with account.createTransaction. It requires a recipient
and an amount in satoshis (often called “duffs” in Dash). 100 million satoshis equals one Dash. We pass the transaction
to account.broadcastTransaction and wait for it to return. Then we output the result, which is a transaction ID.
After that we disconnect from the Client so node can exit.

1.15 Use DAPI client methods

In addition to the SDK methods for interacting with identities, names, contracts, and documents, the SDK also provides
direct access to DAPI client methods.

48 Chapter 1. Platform docs

Dash Platform, Release latest

1.15.1 Prerequisites

• General prerequisites (Node.js / Dash SDK installed)

1.16 Code

The following example demonstrates several of the Core DAPI client methods. DAPI client also has several Platform
methods accessible via getDAPIClient().platform.*. The methods can be found here in the js-dapi-client repos-
itory.

const Dash = require('dash');

const client = new Dash.Client({ network: 'testnet' });

async function dapiClientMethods() {
console.log(await client.getDAPIClient().core.getBlockHash(1));
console.log(await client.getDAPIClient().core.getBestBlockHash());
console.log(await client.getDAPIClient().core.getBlockByHeight(1));

return client.getDAPIClient().core.getStatus();
}

dapiClientMethods()
.then((d) => console.log('Core status:\n', d))
.catch((e) => console.error('Something went wrong:\n', e))
.finally(() => client.disconnect());

Examples using DAPI client to access many of the DAPI endpoints can be found in the DAPI Endpoint
Reference section.

1.17 Set up a node

Since Dash Platform is accessible through DAPI, running a node is typically unnecessary. The information provided
in this section is for advanced users interested in running their own network for development or participating in testing
the project by running a testnet node.

1.17.1 Dash masternode

The purpose of this tutorial is to walk through the steps necessary to set up a masternode with Dash Platform services.

1.16. Code 49

https://github.com/dashevo/platform/tree/master/packages/js-dapi-client/lib/methods
https://github.com/dashevo/platform/tree/master/packages/js-dapi-client/lib/methods

Dash Platform, Release latest

Prerequisites

• Docker (v20.10.0+) and docker-compose (v1.25.0+) installed

• An installation of NodeJS (v16, NPM v8.0+)

The following is not necessary for setting up a local network for development, but is helpful if setting up a testnet
masternode:

• Access to a Linux system configured with a non-root user (guide)

More comprehensive details of using the dashmate tool can be found in the dashmate README.

Use NPM to install dashmate globally in your system:

npm install -g dashmate

Local Network

Dashmate can be used to create a local network on a single computer. This network contains multiple nodes to mimic
conditions and features found in testnet/mainnet settings.

Dashmate local networks use the regtest network type so layer 1 blocks can be easily mined as needed.

Setup

Run the following command to start the setup wizard, then accept the default values at each step to create a local
network:

dashmate setup local

Example (partial) output of the setup wizard showing important information:

✓✓✓ Initialize SDK
› HD private key:␣

→˓tprv8ZgxMBicQKsPfLTCjh8vdHkDHYM369tUeQ4aqpV9GzUfQyBKutfstB1sDfQyLERACTEYy5Qjph42gBiqqnqYmXJZZqRc4PQssGzbvwJXHnN
✓✓✓ Register DPNS identity

› DPNS identity: 6whgUd1LzwzU4ob7K8FGCLV765K7dp2JbEmVgdTQEFxD
✓✓✓ Register DPNS contract

› DPNS contract ID: EpCvWuoh3JcFetFY83HdwuzRUvwxF2hc3mU19MtBg2kK
✓✓✓ Obtain DPNS contract commit block height

› DPNS contract block height: 5
✓✓✓ Register top level domain "dash"
✓✓✓ Register identity for Dashpay

› Dashpay's owner identity: 2T7kLcbJzQrLhBV6BferW42Jimb3BJ5zAAore42mfNyE
✓✓✓ Register Dashpay Contract

› Dashpay contract ID: EAv8ePXREdJ719ntcRiKuEYxv9XooMwL1mJmPHMGuW9r
✓✓✓ Obtain Dashpay contract commit block height

› Dashpay contract block height: 15
✓✓✓ Register Feature Flags identity

› Feature Flags identity: 8BsvV4RCbW7srWj81kgjJCykRBF2rzyigys8XkBchY96
(continues on next page)

50 Chapter 1. Platform docs

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://nodejs.org/en/download/
https://docs.dash.org/en/stable/masternodes/setup.html#set-up-your-vps
https://github.com/dashevo/platform/tree/master/packages/dashmate

Dash Platform, Release latest

(continued from previous page)

✓✓✓ Register Feature Flags contract
› Feature Flags contract ID: JDrDAGVqTWsM9k7KGBsSjcyC11Vd2UdPxPoPf4NzyyrP

✓✓✓ Obtain Feature Flags contract commit block height
› Feature Flags contract block height: 20

Make a note of the key and identity information displayed during setup as they may be required in the
future.

Operation

Once the setup completes, start/stop/restart the network via the following commands:

dashmate group start
dashmate group stop
dashmate group restart

The status of the network’s nodes can be check via the group status command:

dashmate group status

Mining Dash

During development it may be necessary to obtain Dash to create and topup identities. This can be done using the
dashmate wallet:mint command. First obtain an address to fund via the Create and Fund a Wallet tutorial and then
mine Dash to it as shown below:

SHELL

Mine to provided address

Stop the devnet first
dashmate group stop

Mine 10 Dash to a provided address
dashmate wallet mint 10 --address=<your address> --config=local_seed

Restart the devnet
dashmate group start

1.17. Set up a node 51

Dash Platform, Release latest

SHELL

Mine to new address

Stop the devnet first
dashmate group:stop

Mine 10 Dash to a random address/key
The address and private key will be displayed
dashmate wallet:mint 10 --config=local_seed

Restart the devnet
dashmate group:start

Example output of dashmate wallet mint 10 --address=yYqfdpePzn2kWtMxr9nz22HBFM7WBRmAqG
--config=local_seed:

✓✓✓ Generate 10 dash to address
✓✓✓ Start Core
↓ Use specified address yYqfdpePzn2kWtMxr9nz22HBFM7WBRmAqG [SKIPPED]
✓✓✓ Generate 10 dash to address yYqfdpePzn2kWtMxr9nz22HBFM7WBRmAqG

› Generated 172.59038279 dash
✓✓✓ Wait for balance to confirm
✓✓✓ Stop Core

Using the network

Once the address is funded, you can begin creating identities, data contracts, etc. and experimenting with Dash Platform.
The other tutorials in this section will help you get started.

To make the Dash SDK connect to your local network, set the network option to 'local':

const clientOpts = {
network: 'local',
...

};

const client = new Dash.Client(clientOpts);

Testnet Masternode Setup

Advanced Topic

Running a masternode requires familiarity with Dash Platform services. Improper configuration may im-
pact testing so please exercise caution if running a masternode.

To setup a testnet masternode, please refer to the comprehensive documentation of the process as described here. The
following video also details how to complete the process.

Full Platform Node

A full node that with all Platform services can be started by simply running the setup command with the
node type setup parameter set to fullnode and then starting the node.

52 Chapter 1. Platform docs

https://docs.dash.org/en/stable/masternodes/setup-testnet.html#dashmate-installation
https://github.com/dashevo/platform/tree/master/packages/dashmate#setup-node

Dash Platform, Release latest

dashmate setup testnet fullnode
dashmate start

Remote Development Network

Connecting to a remote development network

In order to connect to a remote devnet (e.g. one run by Dash Core Group), please use one of the methods
described in the Connect to a Devnet section.

For development we recommend using either a local network created via dashmate as described above or using Testnet.
While configuring a remote development network is possible using the Dash network deployment tool, it is beyond the
scope of this documentation. For details regarding this tool, please refer to the GitHub repository.

1.17.2 Dash Core full node

Since Dash Platform is fully accessible via DAPI, running a full node is unnecessary and generally provides no particular
benefit. Regardless, the steps below provide the necessary information for advanced users to connect.

Config File

The config file shown below may be used to connect a Dash Core node to Testnet. Testnet currently operates using
Dash Core v19.3.0.

dash-testnet.conf
testnet=1

Hard-coded first node
addnode=seed-1.testnet.networks.dash.org:19999

Starting Dash Core

To start Dash Core and connect to Testnet, simply run dashd or dash-qt with the conf parameter set to the configuration
file created above: <path to binary> -conf=<path to configuration file>

dashd -conf=/home/dash/.dashcore/dash-testnet.conf

1.18 Decentralized API (DAPI)

1.18.1 Overview

Historically, nodes in most cryptocurrency networks communicated with each other, and the outside world, according
to a peer-to-peer (P2P) protocol. The use of P2P protocols presented some downsides for developers, namely, network
resources were difficult to access without specialized knowledge or trusted third-party services.

To overcome these obstacles, the Dash decentralized API (DAPI) uses Dash’s robust masternode infrastructure to pro-
vide an API for accessing the network. DAPI supports both layer 1 (Core blockchain) and layer 2 (Dash Platform)
functionality so all developers can interact with Dash via a single interface.

1.18. Decentralized API (DAPI) 53

https://github.com/dashevo/dash-network-deploy
https://github.com/dashpay/dash/releases/tag/v19.3.0

Dash Platform, Release latest

Fig. 1: DAPI Overview

1.18.2 Security

DAPI protects connections by using TLS to encrypt communication between clients and the masternodes. This en-
cryption safeguards transmitted data from unauthorized access, interception, or tampering. Platform gRPC endpoints
provide an additional level of security by optionally returning cryptographic proofs. Successful proof verification
guarantees that the server responded without modifying the requested data.

1.18.3 Endpoint Overview

DAPI currently provides 2 types of endpoints: JSON-RPC and gRPC. The JSON-RPC endpoints expose some layer
1 information while the gRPC endpoints support layer 2 as well as streaming of events related to blocks and transac-
tions/transitions. For a list of all endpoints and usage details, please see the DAPI endpoint reference section.

1.19 Platform Protocol (DPP)

1.19.1 Overview

To ensure the consistency and integrity of data stored on Layer 2, all data is governed by the Dash Platform Protocol
(DPP). Dash Platform Protocol describes serialization and validation rules for the platform’s 3 core data structures:
data contracts, documents, and state transitions. Each of these structures are briefly described below.

1.19.2 Structure Descriptions

Data Contract

A data contract is a database schema that a developer needs to register with the platform in order to start using any
decentralized storage functionality. Data contracts are described using the JSON Schema language and must follow
some basic rules as described in the platform protocol repository. Contracts are serialized to binary form using CBOR.

Contract updates

Dash’s data contracts support backwards-compatible modifications after their initial deployment unlike
many smart contract based systems. This provides developers with additional flexibility when designing
applications.

For additional detail, see the Data Contract explanation.

Document

A document is an atomic entity used by the platform to store user-submitted data. It resembles the documents stored in
a document-oriented DB (e.g. MongoDB). All documents must follow some specific rules that are defined by a generic
document schema. Additionally, documents are always related to a particular application, so they must comply with
the rules defined by the application’s data contract. Documents are submitted to the platform API (DAPI) by clients
during their use of the application.

For additional detail, see the Document explanation.

54 Chapter 1. Platform docs

https://www.jsonrpc.org/
https://grpc.io/docs/guides/
https://cbor.io/
https://en.wikipedia.org/wiki/Document-oriented_database
https://www.mongodb.com/document-databases

Dash Platform, Release latest

State Transition

A state transition represents a change made by a user to the application and platform states. It consists of:

• Either:

– An array of documents, or

– One data contract

• The contract ID of the application to which the change is made

• The user’s signature.

The user signature is made for the binary representation of the state transition using a private key associated with an
identity. A state transition is constructed by a client-side library when the user creates documents and submits them to
the platform API.

For additional detail, see the State Transition explanation.

1.19.3 Versions

Ver-
sion

Information

0.24 See details in the GitHub release.
0.23 See details in the GitHub release.
0.22 See details in the GitHub release.
0.21 See details in the GitHub release.
0.20 This release updated to a newer version of JSON Schema (2020-12 spec) and also switched to a new regex

module (Re2) for improved security. See more details in the GitHub release.

Data Contract

Overview

As described briefly in the Dash Platform Protocol explanation, Dash Platform uses data contracts to define the schema
(structure) of data it stores. Therefore, an application must first register a data contract before using the platform to
store its data. Then, when the application attempts to store or change data, the request will only succeed if the new data
matches the data contract’s schema.

The first two data contracts are the DashPay wallet and Dash Platform Name Service (DPNS). The concept of the
social, username-based DashPay wallet served as the catalyst for development of the platform, with DPNS providing
the mechanism to support usernames.

Details

Ownership

Data contracts are owned by the identity that registers them. Each identity may be used to create multiple data contracts
and data contract updates can only be made using the identity that owns it.

1.19. Platform Protocol (DPP) 55

https://github.com/dashpay/platform/releases/tag/v0.24.0
https://github.com/dashevo/platform/releases/tag/v0.23.0
https://github.com/dashevo/platform/releases/tag/v0.22.0
https://github.com/dashevo/js-dpp/releases/tag/v0.21.0
https://github.com/google/re2
https://github.com/dashevo/js-dpp/releases/tag/v0.20.0
https://www.dash.org/dashpay/

Dash Platform, Release latest

Structure

Each data contract must define several fields. When using the JavaScript implementation of the Dash Platform Protocol,
some of these fields are automatically set to a default value and do not have to be explicitly provided. These include:

• The platform protocol schema it uses (default: defined by js-dpp)

• A contract ID (generated from a hash of the data contract’s owner identity plus some entropy)

• One or more documents

In the example contract shown below, a contact document and a profile document are defined. Each of these
documents then defines the properties and indices it requires.

Registration

Once a Dash Platform Protocol compliant data contract has been defined, it may be registered on the platform. Regis-
tration is completed by submitting a state transition containing the data contract to DAPI .

The drawing below illustrates the steps an application developer follows to complete registration.

Fig. 2: Data Contract Registration

Updates

Since Dash Platform v0.22, it is possible to update existing data contracts in certain backwards-compatible ways. This
includes adding new documents, adding new optional properties to existing documents, and adding non-unique indices
for properties added in the update.

For more detailed information, see the Platform Protocol Reference - Data Contract page.

Example Contract

An example contract for DashPay is included below:

{
"profile": {
"type": "object",
"indices": [
{
"properties": [
{
"$ownerId": "asc"

}
],
"unique": true

},
{
"properties": [

{
(continues on next page)

56 Chapter 1. Platform docs

https://github.com/dashevo/platform/tree/master/packages/js-dpp
https://github.com/dashevo/platform/blob/master/packages/js-dpp/lib/dataContract/DataContract.js#L352
https://github.com/dashevo/platform/blob/master/packages/dashpay-contract/schema/dashpay.schema.json

Dash Platform, Release latest

(continued from previous page)

"$ownerId": "asc"
},
{
"$updatedAt": "asc"

}
]

}
],
"properties": {
"avatarUrl": {
"type": "string",
"format": "url",
"maxLength": 2048

},
"avatarHash": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"description": "SHA256 hash of the bytes of the image specified by avatarUrl"

},
"avatarFingerprint": {
"type": "array",
"byteArray": true,
"minItems": 8,
"maxItems": 8,
"description": "dHash the image specified by avatarUrl"

},
"publicMessage": {
"type": "string",
"maxLength": 140

},
"displayName": {
"type": "string",
"maxLength": 25

}
},
"required": [

"$createdAt",
"$updatedAt"

],
"additionalProperties": false

},
"contactInfo": {
"type": "object",
"indices": [

{
"properties": [
{
"$ownerId": "asc"

},
{

(continues on next page)

1.19. Platform Protocol (DPP) 57

Dash Platform, Release latest

(continued from previous page)

"rootEncryptionKeyIndex": "asc"
},
{
"derivationEncryptionKeyIndex": "asc"

}
],
"unique": true

},
{
"properties": [
{
"$ownerId": "asc"

},
{
"$updatedAt": "asc"

}
]

}
],
"properties": {
"encToUserId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32

},
"rootEncryptionKeyIndex": {
"type": "integer",
"minimum": 0

},
"derivationEncryptionKeyIndex": {
"type": "integer",
"minimum": 0

},
"privateData": {
"type": "array",
"byteArray": true,
"minItems": 48,
"maxItems": 2048,
"description": "This is the encrypted values of aliasName + note + displayHidden␣

→˓encoded as an array in cbor"
}

},
"required": [
"$createdAt",
"$updatedAt",
"encToUserId",
"privateData",
"rootEncryptionKeyIndex",
"derivationEncryptionKeyIndex"

],
"additionalProperties": false

(continues on next page)

58 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

},
"contactRequest": {
"type": "object",
"indices": [
{
"properties": [
{
"$ownerId": "asc"

},
{
"toUserId": "asc"

},
{
"accountReference": "asc"

}
],
"unique": true

},
{
"properties": [

{
"$ownerId": "asc"

},
{
"toUserId": "asc"

}
]

},
{
"properties": [
{
"toUserId": "asc"

},
{
"$createdAt": "asc"

}
]

},
{
"properties": [
{
"$ownerId": "asc"

},
{
"$createdAt": "asc"

}
]

}
],
"properties": {
"toUserId": {
"type": "array",

(continues on next page)

1.19. Platform Protocol (DPP) 59

Dash Platform, Release latest

(continued from previous page)

"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"encryptedPublicKey": {
"type": "array",
"byteArray": true,
"minItems": 96,
"maxItems": 96

},
"senderKeyIndex": {
"type": "integer",
"minimum": 0

},
"recipientKeyIndex": {
"type": "integer",
"minimum": 0

},
"accountReference": {
"type": "integer",
"minimum": 0

},
"encryptedAccountLabel": {
"type": "array",
"byteArray": true,
"minItems": 48,
"maxItems": 80

},
"autoAcceptProof": {
"type": "array",
"byteArray": true,
"minItems": 38,
"maxItems": 102

},
"coreHeightCreatedAt": {
"type": "integer",
"minimum": 1

}
},
"required": [
"$createdAt",
"toUserId",
"encryptedPublicKey",
"senderKeyIndex",
"recipientKeyIndex",
"accountReference"

],
"additionalProperties": false

}
}

This is a visualization of the JSON data contract as UML class diagram for better understanding of the structure:

60 Chapter 1. Platform docs

Dash Platform, Release latest

Fig. 3: Dashpay Contract Diagram

1.19. Platform Protocol (DPP) 61

Dash Platform, Release latest

View a full-size copy of this diagram.

State Transition

Overview

At any given point in time, the data stored by each application (and more broadly, the entire platform) is in a specific
state. State transitions are the means for submitting data that creates, updates, or deletes platform data and results in a
change to a new state.

For example, Alice may have already added Bob and Carol as friends in DashPay while also having a pending friend
request to Dan. If Dan declines the friend request, the state will transition to a new one where Alice and Bob remain
in Alice’s friend list while Dan moves to the declined list.

Fig. 4: State Transition Example

Implementation Overview

To ensure the consistency and integrity of data stored on Layer 2, all data is governed by the Dash Platform Protocol
(DPP) which describes serialization and validation rules. Since state transitions are the vehicle for delivering data to
the platform, the implementation of state transitions resides in DPP alongside the validation logic.

Structure

To support the various data types used on the platform and enable future updates, state transitions were designed to be
flexible. Each state transition consists of a:

1. Header - version and payload type

2. Payload - contents vary depending on payload type

3. Signature - signature of the header/payload by the identity submitting to state transition

The following table contains a list of currently defined payload types:

Payload Type Payload Description
Data Contract Create
(0)

Database schema for a single application

Documents Batch (1) An array of 1 or more document transition objects containing application data
Identity Create (2) Information including the public keys required to create a new Identity
Identity Topup (3) Information including proof of a transaction containing an amount to add to the provided

identity’s balance
Data Contract Up-
date (4)

An updated database schema to modify an existing application

62 Chapter 1. Platform docs

Dash Platform, Release latest

Application Usage

State transitions are constructed by client-side libraries and then submitted to the platform via DAPI . Based on the
validation rules described in DPP (and an application data contract where relevant), Dash Platform first validates the
state transition.

Some state transitions (e.g. data contracts, identity) are validated solely by rules explicitly defined in DPP, while others
(e.g. documents) are also subject to the rules defined by the relevant application’s data contract. Once the state transition
has been validated, the platform stores the data and updates the platform state.

For more detailed information, see the Platform Protocol Reference - State Transition page

Document

Overview

Dash Platform is based on document-oriented database concepts and uses related terminology. In short, JSON docu-
ments are stored into document collections which can then be fetched back using a query language similar to common
document-oriented databases like MongoDB, CouchDB, or Firebase.

Documents are defined in an application’s Data Contract and represent the structure of application-specific data. Each
document consists of one or more fields and the indices necessary to support querying.

Details

Base Fields

Dash Platform Protocol (DPP) defines a set of base fields that must be present in all documents. For the js-dpp
reference implementation, the base fields shown below are defined in the document base schema.

Field Name Description
protocolVersion The platform protocol version (currently 1)
$id The document ID (32 bytes)
$type Document type defined in the referenced contract
$revision Document revision (=>1)
$dataContractId Data contract ID generated from the data contract’s ownerId and entropy (32 bytes)
$ownerId Identity of the user submitting the document (32 bytes)
$createdAt Time (in milliseconds) the document was created
$updatedAt Time (in milliseconds) the document was last updated

Timestamp fields

Note: The $createdAt and $updatedAt fields will only be present in documents that add them to the
list of required properties.

1.19. Platform Protocol (DPP) 63

https://en.wikipedia.org/wiki/Document-oriented_database
https://www.mongodb.com/
https://couchdb.apache.org/
https://firebase.google.com/
https://github.com/dashevo/platform/tree/master/packages/js-dpp
https://github.com/dashevo/platform/tree/master/packages/js-dpp
https://github.com/dashevo/platform/blob/master/packages/js-dpp/schema/document/documentBase.json

Dash Platform, Release latest

Data Contract Fields

Each application defines its own fields via document definitions in its data contract. Details of the DPNS data contract
documents are described below as an example. This contract defines two document types (preorder and domain) and
provides the functionality described in the Name Service explanation.

Document Type Field Name Data Type
preorder saltedDomainHash string
— — —
domain label string
domain normalizedLabel string
domain normalizedParentvDomainName string
domain preorderSalt array (bytes)
domain records object
domain records.dashUniqueIdentityId array (bytes)
domain records.dashAliasIdentityId array (bytes)
domain subdomainRules object
domain subdomainRules.allowSubdomains boolean

Example Document

The following example shows the structure of a DPNS domain document as output from JSON.stringify(). Note
the $ prefix indicating the base fields.

{
"$protocolVersion": 1,
"$id": "5D8U1k6t6ax8TnyL6QGFFbtMhn39zsixrSMQaxZrYKf1",
"$type": "domain",
"$dataContractId": "GWRSAVFMjXx8HpQFaNJMqBV7MBgMK4br5UESsB4S31Ec",
"$ownerId": "9gU2ZnDhkakHgB4eLbqvEAwQPDBwhW12KD5xPZxybNjE",
"$revision": 1,
"label": "RT-Sylvan-71605",
"normalizedLabel": "rt-sylvan-71605",
"normalizedParentDomainName": "dash",
"preorderSalt": "zKaLWLe+kKHiRoBXdfSd7TSU9HdIseeoOly1eTYZ670=",
"records": {
"dashUniqueIdentityId": "9gU2ZnDhkakHgB4eLbqvEAwQPDBwhW12KD5xPZxybNjE"

},
"subdomainRules": {
"allowSubdomains": false

}
}

64 Chapter 1. Platform docs

https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json
https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json

Dash Platform, Release latest

Document Submission

Once a document has been created, it must be encapsulated in a State Transition to be sent to the platform. The structure
of a document state transition is shown below. For additional details, see the State Transition explanation.

Field Name Description
protocolVersion Dash Platform Protocol version (currently 0)
type State transition type (1 for documents)
ownerId Identity submitting the document(s)
transitions Document create, replace, or delete transitions (up to 10 objects)
signaturePublicKeyId The id of the identity public key that signed the state transition
signature Signature of state transition data

Document Create

The document create transition is used to create a new document on Dash Platform. The document create transition
extends the base schema to include the following additional fields:

Field Type Description
$entropy array (32 bytes) Entropy used in creating the document ID
$createdAt integer (Optional) Time (in milliseconds) the document was created
$updatedAt integer (Optional) Time (in milliseconds) the document was last updated

Document Replace

The document replace transition is used to update the data in an existing Dash Platform document. The document
replace transition extends the base schema to include the following additional fields:

Field Type Description
$revision integer Document revision (=> 1)
$updatedAt integer (Optional) Time (in milliseconds) the document was last updated

Document Delete

The document delete transition is used to delete an existing Dash Platform document. It only requires the fields found
in the base document transition.

For more detailed information, see the Platform Protocol Reference - Document page.

1.19. Platform Protocol (DPP) 65

Dash Platform, Release latest

Data Trigger

This page is intended to provide a brief description of how data triggers work in the initial version of Dash
Platform. The design will likely undergo changes in the future.

Overview

Although data contracts provide much needed constraints on the structure of the data being stored on Dash Platform,
there are limits to what they can do. Certain system data contracts may require server-side validation logic to operate
effectively. For example, DPNS must enforce some rules to ensure names remain DNS compatible. Dash Platform
Protocol (DPP) supports this application-specific custom logic using Data Triggers.

Constraints

Given a number of technical considerations (security, masternode processing capacity, etc.), data triggers
are not considered a platform feature at this time. They are currently hard-coded in Dash Platform Protocol
and only used in system data contracts.

Details

Since all application data is submitted in the form of documents, data triggers are defined in the context of documents.
To provide even more granularity, they also incorporate the document action so separate triggers can be created for
the CREATE, REPLACE, or DELETE actions.

As an example, DPP contains several data triggers for DPNS. The domain document has added constraints for creation.
All DPNS document types have constraints on replacing or deleting:

Data
Contract

Document Ac-
tion(s)

Trigger Description

DPNS domain CREATE Enforces DNS compatibility, validate provided hashes, and restrict top-
level domain (TLD) registration

—- —- —- —-
DPNS All Document

Types
REPLACE Prevents updates to any DPNS document type

DPNS All Document
Types

DELETE Prevents deletion of any DPNS document type

When document state transitions are received, DPP checks if there is a trigger associated with the document type and
action. If a trigger is found, DPP executes the trigger logic. Successful execution of the trigger logic is necessary for
the document to be accepted and applied to the platform state.

66 Chapter 1. Platform docs

https://github.com/dashevo/platform/tree/master/packages/js-dpp/lib/dataTrigger/
https://github.com/dashevo/platform/blob/master/packages/js-dpp/lib/dataTrigger/dpnsTriggers/createDomainDataTrigger.js
https://github.com/dashevo/platform/blob/master/packages/js-dpp/lib/dataTrigger/rejectDataTrigger.js
https://github.com/dashevo/platform/blob/master/packages/js-dpp/lib/dataTrigger/rejectDataTrigger.js

Dash Platform, Release latest

1.20 Identity

1.20.1 Overview

Identities are foundational to Dash Platform. They provide a familiar, easy-to-use way for users to interact and identify
one another using names rather than complicated cryptocurrency identifiers such as public key hashes.

Identities are separate from names and can be thought of as a lower-level primitive that provides the foundation for
various user-facing functionality. An identity consists primarily of one or more public keys recorded on the platform
chain that can be used to control a user’s profile and sign their documents. Each identity also has a balance of credits
that is established by locking funds on layer 1. These credits are used to pay fees associated with the state transitions
used to perform actions on the platform.

Identities DIP

The Identities Dash Improvement Proposal (DIP) provides more extensive background information and
details.

1.20.2 Identity Management

In order to create an identity, a user pays the network to store their public key(s) on the platform chain. Since new users
may not have existing Dash funds, an invitation process will allow users to create an identity despite lacking their own
funds. The invitation process will effectively separate the funding and registration steps that are required for any new
identity to be created.

Once an identity is created, its credit balance is used to pay for activity (e.g. use of applications). The topup process
provides a way to add additional funds to the balance when necessary.

Identity Create Process

Testnet Faucet

On Testnet, a test Dash faucet is available. It dispenses small amounts to enable all users to directly acquire
the funds necessary to create an identity and username.

First, a sponsor (which could be a business, another person, or even the same user who is creating the identity) spends
Dash in a transaction to create an invitation. The transaction contains one or more outputs which lock some Dash funds
to establish credits within Dash platform.

After the transaction is broadcast and confirmed, the sponsor sends information about the invitation to the new user.
This may be done as a hyperlink that the core wallet understands, or as a QR code that a mobile wallet can scan. Once
the user has the transaction data from the sponsor, they can use it to fund an identity create state transition within Dash
platform.

Users who already have Dash funds can act as their own sponsor if they wish, using the same steps listed here.

1.20. Identity 67

https://github.com/dashpay/dips/blob/master/dip-0011.md
https://testnet-faucet.dash.org/
https://github.com/dashpay/dips/blob/master/dip-0011.md#identity-create-transition

Dash Platform, Release latest

Identity Balance Topup Process

The identity balance topup process works in a similar way to the initial identity creation funding. As with identity
creation, a lock transaction is created on the layer 1 core blockchain. This lock transaction is then referenced in the
identity topup state transition which increases the identity’s balance by the designated amount.

Since anyone can topup either their own account or any other account, application developers can easily
subsidize the cost of using their application by topping up their user’s identities.

Identity Update Process

Added in Dash Platform Protocol v0.23

Identity owners may find it necessary to update their identity keys periodically for security purposes. The identity
update state transition enables users to add new keys and disable existing ones.

Identity updates only require the creation of a state transition that includes a list of keys being added and/or disabled.
Platform retains disabled keys so that any existing data they signed can still be verified while preventing them from
signing new data.

Masternode Identities

Dash Platform v0.22 introduced identities for masternode owners and operators, and a future release will introduce
identities for masternode voters. The system automatically creates and updates these identities based on information in
the layer 1 masternode registration transactions. For example, owner/operator withdraw keys on Platform are aligned
with the keys assigned on the Core blockchain.

In a future release, the credits paid as fees for state transitions will be distributed to masternode-related identities similar
to how rewards are currently distributed to masternodes on the core blockchain. Credits will be split between owner
and operator in the same ratio as on layer 1, and masternode owners will also have the flexibility to further split their
portion between multiple identities to support reward-sharing use cases.

1.20.3 Credits

Added in Dash Platform Protocol v0.13

DPP v0.13 introduced the initial implementation of credits. Future releases will expand the functionality
available.

As mentioned above, credits provide the mechanism for paying fees that cover the cost of platform usage. Once a user
locks Dash on the core blockchain and proves ownership of the locked value in an identity create or topup transaction,
their credit balance increases by that amount. As they perform platform actions, these credits are deducted to pay the
associated fees.

As of Dash Platform Protocol v0.13, credits deducted to pay state transition fees cannot be converted by
masternodes back into Dash. This aspect of the credit system will come in a future release.

68 Chapter 1. Platform docs

https://github.com/dashpay/dips/blob/master/dip-0011.md#identity-topup-transition
https://github.com/dashpay/dips/blob/master/dip-0011.md#identity-update-transition
https://github.com/dashpay/dips/blob/master/dip-0011.md#identity-update-transition

Dash Platform, Release latest

1.21 Name Service (DPNS)

1.21.1 Overview

Dash Platform Name Service (DPNS) is a service used to register names on Dash Platform. It is a general service
that is used to provide usernames and application names for identities but can also be extended in the future to resolve
other cryptocurrency addresses, websites, and more. DPNS is implemented as an application on top of the platform
and leverages platform capabilities.

DPNS DIP

The DPNS Dash Improvement Proposal (DIP) provides more extensive background information and de-
tails.

Relationship to identities

DPNS names and Identities are tightly integrated. Identities provide a foundation that DPNS builds on to enable name-
based interactions – a user experience similar to what is found in non-cryptocurrency applications. With DPNS, users
or application developers register a name and associate it with an identity. Once linked, the identity’s private keys allow
them to prove ownership of the name to establish trust when they interact with other users and applications.

1.21.2 Details

Name Registration Process

Given the DNS-compatible nature of DPNS, all DPNS names are technically domain names and are reg-
istered under a top-level DPNS domain (.dash). Some applications may abstract the top-level domain
away, but it is important to be aware that it exists.

To prevent front-running, name registration is split into a two phase process consisting of:

1. Pre-ordering the domain name

2. Registering the domain name

In the pre-order phase, the domain name is salted to obscure the actual domain name being registered (e.g.
hash('alice.dash' + salt)) and submitted to platform. This is done to prevent masternodes from seeing the
names being registered and “stealing” them for later resale. Once the pre-order receives a sufficient number of confir-
mations, the registration can proceed.

In the registration phase, the domain name (e.g. alice.dash) is once again submitted along with the salt used in the
pre-order. The salt serves as proof that the registration is from the user that submitted the pre-order. This registration
also references the identity being associated with the domain name to complete the identity-domain link.

1.21. Name Service (DPNS) 69

https://github.com/dashpay/dips/blob/master/dip-0012.md
https://en.wikipedia.org/wiki/Domain_name_front_running

Dash Platform, Release latest

Implementation

DPNS names currently have several constraints as defined in the DPNS data contract. The constraints exist to maintain
compatibility with DNS:

• Maximum length - 63 characters

• Character set - 0-9, - (hyphen), and A-Z (case insensitive)

Note: Use of - as a prefix/suffix to a name is not allowed (e.g. -name or name-). This constraint is defined
by this JSON-Schema pattern in the DPNS data contract:

"^[a-zA-Z0-9][a-zA-Z0-9-]{0,61}[a-zA-Z0-9]$"

Additionally, the DPNS data triggers defined in js-dpp enforce additional validation rules related to the domain docu-
ment.

For more implementation details, please reference the open-source JavaScript DPNS client reference implementation
found in the js-dpns-client repository. Additionally, the DPNS data contract is available in the dpns-contract repository.

Contract Diagram

This is a visualization of the JSON data contract as UML class diagram for better understanding of the structure. The
left side shows the domain document and the right side shows the preorder document:

Fig. 5: DPNS Contract Diagram

View a full-size copy of this diagram.

1.22 Drive

1.22.1 Overview

Using the traditional, layer 1 blockchain for data storage is widely known to be expensive and inefficient. Consequently,
data for Dash Platform applications is stored in Drive, a layer 2 component that provides decentralized storage hosted
by masternodes. As data changes over time, Drive maintains a record of the current state of each item to support easy
retrieval using DAPI .

70 Chapter 1. Platform docs

https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json
https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json#L35
https://github.com/dashevo/platform/tree/master/packages/js-dpp/lib/dataTrigger
https://github.com/dashevo/js-dpns-client
https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json

Dash Platform, Release latest

1.22.2 Details

Drive Components

There are a number of components working together to facilitate Drive’s overall functionality. These components are
listed below along with a brief description of service they provide:

• Platform chain (orders state transitions; creates and propagates blocks of state transitions)

• Platform state machine (validates data against the Dash platform protocol; applies data to state and storage)

• Platform state (represents current data)

• Storage (record of state transitions)

Data Update Process

The process of adding or updating data in Drive consists of several steps to ensure data is validated, propagated, and
stored properly. This description provides a simplified overview of the process:

1. State transitions are submitted to the platform via DAPI

2. DAPI sends the state transitions to the platform chain where they are validated, ordered, and committed to a block

3. Valid state transitions are applied to the platform state

4. The platform chain propagates a block containing the state transitions

5. Receiving nodes update Drive data based on the valid state transitions in the block

Fig. 6: Storing data in Drive

Platform Chain

Overview

The platform chain is the Drive component responsible for replicating the platform state across all masternodes par-
ticipating in the network. Masternodes operate this Proof of Service (PoSe) chain to provide layer 2 consensus and
support Dash Platform-specific requirements without impacting layer 1 functionality. Although the platform chain can
read from the Dash layer 1 core blockchain, the core blockchain is not dependent on it or aware of it.

Details

Evolution of design

Early designs of Drive were based on using on the layer 1 core blockchain and IPFS to replicate layer 2 data. As the
design matured, a number of challenges led to a re-evaluation of how to efficiently secure, propagate, and finalize this
data. Ultimately, meeting the requirements for a trustless, decentralized system led to choosing a blockchain-based
solution over some seemingly obvious choices that work fine in a centralized setting.

1.22. Drive 71

https://docs.ipfs.io/introduction/overview/

Dash Platform, Release latest

Characteristics

In order to support Dash Platform’s performance requirements, the platform chain has the following design character-
istics:

• Relies on masternode Proof of Service, not miner Proof of Work (PoW)

• Hosted exclusively on masternodes

• Uses a practical Byzantine Fault Tolerance (pBFT) consensus algorithm

• Has a deterministic fee structure

• Provides fast (< 10 seconds) and absolute block finality (no reorgs)

Blocks and Transitions

Similar to transactions on the Dash core chain, state transitions are aggregated and put into blocks periodically on
the platform chain. Each block has a header that points back to the previous block, thus forming a chain of blocks
that is shared among all masternodes. The platform’s pBFT consensus algorithm is responsible for ordering the state
transitions into a block and then committing the block. As soon as a block is accepted by a + 1 majority of validators,
it becomes final and cannot be changed. Thus, the platform chain is not susceptible to blockchain reorganizations.

Platform State

Platform state represents the current state of all the data stored on the platform. You can think about this as one large
database, where each application has its own database (Application State) defined by the Data Contract associated with
the application. Therefore, the platform state can be thought of as a global view of all Dash Platform data, whereas the
application state is a local view of one application’s data.

The Platform Chain is processed by a state machine to reach consensus on how to build the state and what it should
look like. The last block of the Platform Chain contains the root of the tree structure built from all documents in the
platform state. By checking the root of the state tree stored in the block, the node can confirm that it has the correct
state.

Fig. 7: Platform State Propagation

1.23 Platform Consensus

Dash Platform is a decentralized network that requires its own consensus algorithm for decision-making and verifying
state transitions. This consensus algorithm must fulfill the following three requirements:

** * Fast write operations:** The Drive block time needs to be small since state transitions must be confirmed and
applied to the state as quickly as possible.
** * Fast reads:** Each block should update the state so that the data and cryptographic proofs can be read directly
from the database. However, this needs to be done fast, so a consensus algorithm with faster reads is needed.
** * Data consistency:** Nodes should always respond with the same data for a given block height to negate instances
of blockchain reorgs.

Tendermint was selected as the consensus solution that most closely aligned with the requirements and goals of Dash
Platform.

72 Chapter 1. Platform docs

Dash Platform, Release latest

1.23.1 Tendermint

Tendermint is a mostly asynchronous, pBFT-based consensus protocol. Here is a quick overview of how it works:

• Validators participate by taking turns to propose. They validate state transitions by voting on them.

• If a validator successfully validates a block, it gets added to the chain. Do note that voting on state transitions is
indirect. Plus, validators don’t work on individual transitions, but vote on a block of transitions. This method is
a lot more resource-friendly.

• If a validator fails to add a block, the protocol automatically moves to the next round, and a new validator is
chosen to propose the block.

• Following the proposal, Tendermint goes through two stages to voting – Pre-vote and Pre-Commit.

• A block gets committed when it gets >2/3rd of the total validators pre-committing for it in one round. The
sequence of Propose -> Pre-vote -> Pre-commit is one round.

• In the event of a network dispute, Tendermint prefers consistency over availability.No additional blocks are con-
firmed or finalized until the dispute is resolved. This takes network reorg out of the equation.

Tendermint has been mainly designed to enable efficient verification and authentication of the latest state of the
blockchain. It does so by embedding cryptographic commitments for certain information in the block “header.” This
information includes:

• Contents of the block.

• The Validator set committing the block.

• Various results returned by the application.

Notes about Tendermint

• Block execution only occurs after a block is committed. So, cryptographic proofs for the latest state
are only available in the subsequent block.

• Information like the transaction results and the validator set is never directly included in the block -
only their Merkle roots are.

• Verification of a block requires a separate data structure to store this information. We call this the
“State.”

• Block verification also requires access to the previous block.

Additional information about Tendermint is available in the Tendermint Core spec.

Tendermint Limitations

While Tendermint provided a great starting point, implementing the classic version of the algorithm would have required
us to start from scratch. For example, Tendermint validators use EdDSA cryptographic keys to sign votes during the
consensus process.

However, Dash already has a well-established network of Masternodes that use BLS keys and a BLS threshold signing
mechanism to produce a single signature that mobile wallets and other light clients can easily verify. In addition, subsets
of masternodes, called Long-living Masternode Quorums (LLMQ), can perform BLS threshold signing on arbitrary
messages.

Rather than reinventing the wheel, Dash chose to fork the Tendermint code and integrate masternode quorums into the
process to create a new consensus algorithm called “Tenderdash.”

1.23. Platform Consensus 73

https://en.wikipedia.org/wiki/EdDSA
https://blog.dash.org/secret-sharing-and-threshold-signatures-with-bls-954d1587b5f
https://blog.dash.org/secret-sharing-and-threshold-signatures-with-bls-954d1587b5f
https://github.com/dashpay/dips/blob/master/dip-0006.md

Dash Platform, Release latest

1.23.2 Tenderdash

As with Tendermint, Tenderdash provides Byzantine Fault Tolerant (BFT) State Machine Replication via blocks con-
taining transactions. Additionally, it has been updated to integrate some improvements that leverage Dash’s LLMQs.
Key mechanisms of the Tenderdash algorithm include:

• If enough members have signed the same message, a valid recovered threshold signature can be created and
propagated to the rest of the network.

• Quorums are formed and rotated from time to time through distributed key generation (DKG) sessions.

• DKG chooses pseudorandom nodes from the deterministic masternode list.

• The resulting quorum is then committed to the core blockchain as a transaction.

• The members of a quorum operate somewhat like validators but do so more efficiently due to the pre-existing
BLS threshold signature.

• BLS threshold signing results in more compact block headers since only a single BLS threshold signature is
required instead of individual signatures from each validator. Notably, this means that any client can easily
verify the block signatures using the deterministic masternode list.

• The validators’ signature is produced by an LLMQ, which is secured by the core blockchain’s Proof-of-Work
(PoW).

This allows Dash Platform to leverage the best of both worlds – the speed and finality of Tendermint and the security
of PoW.

Dynamic Validator Set Rotation

Rather than having a static validator set, Tenderdash periodically changes to a new set of validator nodes. These
validator sets are a subset of masternodes that belong to the LLMQs.

The validator set is assigned to a new masternode quorum every 15 blocks (~2 mins). To determine the next quorum,
the BLS threshold signature of the previous block is used as a verifiable random function to choose one of the available
quorums.

There are many advantages to adopting this dynamic rotation approach:

• The validator set is less predictable, which reduces the window for attacks like DoS.

• The process balances the performance and security of platform chains like InstantSend and ChainLock quorum
changes on the core chain.

1.23.3 How Does Tenderdash Differ From Tendermint?

Here are the differences between Tenderdash and Tendermint:

• Threshold Signatures: Tenderdash employs threshold signatures for signing, adding an extra layer of security.

• Quorum-Based Voting: Tenderdash implements quorums, meaning not all validators participate in every voting
round; only active quorum members are involved, enhancing efficiency.

• Execution Timing: Tenderdash facilitates same-block execution, optimizing transaction processing, whereas
Tendermint traditionally relies on next-block execution.

• Consensus Module Refactoring: Tenderdash has undergone a complete overhaul of its vote-extensions and
consensus module, working diligently to eliminate deadlocks and increase stability.

74 Chapter 1. Platform docs

https://en.wikipedia.org/wiki/Verifiable_random_function

Dash Platform, Release latest

• Dynamic Validator Management: Tenderdash incorporates logic to actively connect with new validators in
a set and disconnect those that are no longer in the validator set, thereby ensuring an adaptable and efficient
network.

• Project Activity: Whereas Tenderdash continues to evolve and improve, Tendermint appears somewhat inactive
lately, though this observation might be subjective.

1.24 DashPay

1.24.1 Overview

DashPay is one of the first applications of Dash Platform’s data contracts . At its core DashPay is a data contract that
enables a decentralized application that creates bidirectional direct settlement payment channels between identities.

For previews of an updated Dash mobile wallet UI based on the DashPay contract or to join the alpha test
program, please visit the DashPay landing page at dash.org.

The DashPay contract enables an improved Dash wallet experience with features including:

• User Centric Interaction: DashPay brings users front and center in a cryptocurrency wallet. Instead of sending
to an address, a user sends directly to another user. Users will have a username, a display name, an avatar and a
quick bio/information message.

• Easy Payments: Once two users have exchanged contact requests, each can make payments to the other without
manually sharing addresses via emails, texts or BIP21 QR codes. This is because every contact request contains
the information (an encrypted extended public key) required to send payments to the originator of the request.
When decrypted, this extended public key can be used by the recipient of the contact request to generate payment
addresses for the originator of the contact request.

• Payment History: When a contact is established, a user can easily track the payments they have sent to another
user and the payments that they have received from that other user. A user will have an extended private key to
track payments that are received from the other user and an extended public key to track payments that are sent
to that other user.

• Payment Participant Protection: The extended public keys in contact requests are encrypted in such a way that
only the two users involved in a contact’s two way relationship can decrypt those keys. This ensures that when
any two users make payments in DashPay, only they know the sender and receiver while 3rd parties do not.

1.24.2 Details

The contract defines three document types: contactRequest, profile and contactInfo. ContactRequest docu-
ments are the most important. They are used to establish relationships and payment channels between Dash identities.
Profile documents are used to store public facing information about Dash identities including avatars and display names.
ContactInfo documents can be used to store private information about other Dash identities.

1.24. DashPay 75

Dash Platform, Release latest

Establishing a Contact

1. Bob installs wallet software that supports DashPay.

2. Bob registers an identity and then creates a username through DPNS.

3. Bob searches for Carol by her username. Behind the scenes this search returns the unique identifier for Carol’s
identity. An example of doing this can be seen in the Retrieve a Name tutorial.

4. Bob sends a contact request containing an encrypted extended public key to Carol. This establishes a one way
relationship from Bob to Carol.

5. Carol accepts the request by sending a contact request containing an encrypted extended public key back to Bob.
This establishes a one way relationship from Carol to Bob.

6. Bob and Carol are now contacts of one another and can make payments to each other by decrypting the extended
public key received from the other party and deriving payment addresses from it. Since both have established
one way relationships with each other, they now have a two way relationship. If Bob gets a new device, he can
use his recovery phrase from step one and restore his wallet, contacts (including Carol) and payments to and
from his contacts.

Fig. 8: Contact-based Wallet

76 Chapter 1. Platform docs

Dash Platform, Release latest

Implementation

DashPay has many constraints as defined in the DashPay data contract. Additionally, the DashPay data triggers defined
in js-dpp enforce additional validation rules related to the contactRequest document.

DashPay DIP

Please refer to the DashPay Dash Improvement Proposal (DIP) for more extensive background information
and complete details about the data contract.

• Contact request details

• Profile details

• Contact Info details

{
"profile": {
"type": "object",
"indices": [
{
"properties": [
{
"$ownerId": "asc"

}
],
"unique": true

},
{
"properties": [

{
"$ownerId": "asc"

},
{
"$updatedAt": "asc"

}
]

}
],
"properties": {
"avatarUrl": {
"type": "string",
"format": "url",
"maxLength": 2048

},
"avatarHash": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"description": "SHA256 hash of the bytes of the image specified by avatarUrl"

},
"avatarFingerprint": {
"type": "array",
"byteArray": true,
"minItems": 8,

(continues on next page)

1.24. DashPay 77

https://github.com/dashevo/platform/blob/master/packages/dashpay-contract/schema/dashpay.schema.json
https://github.com/dashevo/platform/tree/master/packages/js-dpp/lib/dataTrigger/dashpayDataTriggers
https://github.com/dashpay/dips/blob/master/dip-0015.md

Dash Platform, Release latest

(continued from previous page)

"maxItems": 8,
"description": "dHash the image specified by avatarUrl"

},
"publicMessage": {
"type": "string",
"maxLength": 140

},
"displayName": {
"type": "string",
"maxLength": 25

}
},
"required": [

"$createdAt",
"$updatedAt"

],
"additionalProperties": false

},
"contactInfo": {
"type": "object",
"indices": [

{
"properties": [
{
"$ownerId": "asc"

},
{
"rootEncryptionKeyIndex": "asc"

},
{
"derivationEncryptionKeyIndex": "asc"

}
],
"unique": true

},
{
"properties": [
{
"$ownerId": "asc"

},
{
"$updatedAt": "asc"

}
]

}
],
"properties": {
"encToUserId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32

(continues on next page)

78 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

},
"rootEncryptionKeyIndex": {
"type": "integer",
"minimum": 0

},
"derivationEncryptionKeyIndex": {
"type": "integer",
"minimum": 0

},
"privateData": {
"type": "array",
"byteArray": true,
"minItems": 48,
"maxItems": 2048,
"description": "This is the encrypted values of aliasName + note + displayHidden␣

→˓encoded as an array in cbor"
}

},
"required": [
"$createdAt",
"$updatedAt",
"encToUserId",
"privateData",
"rootEncryptionKeyIndex",
"derivationEncryptionKeyIndex"

],
"additionalProperties": false

},
"contactRequest": {
"type": "object",
"indices": [

{
"properties": [
{
"$ownerId": "asc"

},
{
"toUserId": "asc"

},
{
"accountReference": "asc"

}
],
"unique": true

},
{
"properties": [
{
"$ownerId": "asc"

},
{
"toUserId": "asc"

(continues on next page)

1.24. DashPay 79

Dash Platform, Release latest

(continued from previous page)

}
]

},
{
"properties": [
{
"toUserId": "asc"

},
{
"$createdAt": "asc"

}
]

},
{
"properties": [
{
"$ownerId": "asc"

},
{
"$createdAt": "asc"

}
]

}
],
"properties": {
"toUserId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"encryptedPublicKey": {
"type": "array",
"byteArray": true,
"minItems": 96,
"maxItems": 96

},
"senderKeyIndex": {
"type": "integer",
"minimum": 0

},
"recipientKeyIndex": {
"type": "integer",
"minimum": 0

},
"accountReference": {
"type": "integer",
"minimum": 0

},
"encryptedAccountLabel": {
"type": "array",

(continues on next page)

80 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

"byteArray": true,
"minItems": 48,
"maxItems": 80

},
"autoAcceptProof": {
"type": "array",
"byteArray": true,
"minItems": 38,
"maxItems": 102

},
"coreHeightCreatedAt": {
"type": "integer",
"minimum": 1

}
},
"required": [
"$createdAt",
"toUserId",
"encryptedPublicKey",
"senderKeyIndex",
"recipientKeyIndex",
"accountReference"

],
"additionalProperties": false

}
}

1.25 Fees

1.25.1 Overview

Since Dash Platform is a decentralized system with inherent costs to its functionality, an adequate fee system is neces-
sary in order to incentive the hosts (masternodes) to maintain it.

Fees on Dash Platform are divided into two main categories:

• Storage fees

• Processing fees

Storage fees cover the costs to store the various types of data throughout the network, while processing fees cover the
computational costs incurred by the masternodes to process state transitions. For everyday use, processing fees are
minuscule compared to storage fees. However, they are important in the prevention of attacks on the network, in which
case they become prohibitively expensive.

Fee System DIP

Comprehensive details regarding fees will be available in an upcoming Dash Platform Fee System DIP.

1.25. Fees 81

Dash Platform, Release latest

1.25.2 Costs

The current cost schedule is outlined in the table below:

Operation Cost (credits)
Permanent storage 40000 / byte
Base processing fee 100000
Write to storage 750 / byte
Load from storage 3500 / byte
Seek storage 2000
Query 75 / byte
Load from memory 20 / byte
Blake3 hash function 400 + 64 / 64-byte block

Credits

Refer to the Identity explanation section for information regarding how credits are created.

1.25.3 Fee Multiplier

Given fluctuations of the Dash price, a variable Fee Multiplier provides a way to balance the cost of fees with network
hosting requirements. All fees are multiplied by the Fee Multiplier:

feePaid = initialFee * feeMultiplier

The Fee Multiplier is subject to change at any time at the discretion of the masternodes via a voting mechanism. Dash
Core Group research indicates maintaining fees at approximately 2x the cost of hosting the network is optimal.

1.25.4 Storage Refund

In an attempt to minimize Dash Platform’s storage requirements, users are incentivized to remove data that they no
longer want to be stored in the Dash Platform state for a refund. Data storage fees are distributed to masternodes over
the data’s lifetime which is 50 years for permanent storage. Therefore, at any time before the data’s fees are entirely
distributed, there will be fees remaining which can be refunded to the user if they decide to delete the data.

1.25.5 User Tip

Wallets will be enabled to give users the option to provide a tip to the block proposer in hopes of incentivizing them to
include their state transition in the next block. This feature will be especially useful in times of high traffic.

1.25.6 Formula

The high level formula for a state transition’s fee is:

fee = storageFee + processingFee - storageRefund + userTip

82 Chapter 1. Platform docs

Dash Platform, Release latest

1.26 DAPI Endpoints

DAPI currently provides 2 types of endpoints: JSON-RPC and gRPC. The JSON-RPC endpoints expose some layer
1 information while the gRPC endpoints support layer 2 as well as streaming of events related to blocks and transac-
tions/transitions.

1.26.1 JSON-RPC Endpoints

Layer Endpoint Description
1 getBestBlockHash Returns block hash of the chaintip
1 getBlockHash Returns block hash of the requested block
1 getMnListDiff Returns masternode list diff for the provided block hashes

1.26.2 gRPC Endpoints

Core gRPC Service

Layer Endpoint

1 broadcastTransaction Broadcasts the provided transaction
1 getBlock Returns information for the requested block
1 getStatus Returns blockchain status information
1 getTransaction Returns details for the requested transaction
1 subscribeTo

BlockHeadersWithChainLocks
Returns the requested block headers along with the associated Chain-
Locks.Added in Dash Platform v0.22

1 subscribeTo
TransactionsWithProofs

Returns transactions matching the provided bloom filter along with the
associated islock message and merkle block

Platform gRPC Service

In addition to providing the request data, the following endpoints can also provide proofs that the data returned is valid
and complete.

Layer Endpoint

2 broadcastStateTransitionBroadcasts the provided State Transition
2 getIdentity Returns the requested identity
2 getIdentitiesByPublicKeyHashesReturns the identities associated with the provided public key hashesAdded in

Dash Platform v0.16
2 getDataContract Returns the requested data contract
2 getDocuments Returns the requested document(s)
2 waitForStateTransitionResultResponds with the state transition hash and either a proof that the state transition

was confirmed in a block or an error

The previous version of documentation can be viewed here.

1.26. DAPI Endpoints 83

https://www.jsonrpc.org/
https://grpc.io/docs/guides/
https://docs.dash.org/projects/core/en/stable/docs/reference/p2p-network-instantsend-messages.html#islock
https://docs.dash.org/projects/core/en/stable/docs/reference/p2p-network-data-messages.html#merkleblock
https://dashplatform.readme.io/v0.23.0/docs/reference-dapi-endpoints

Dash Platform, Release latest

JSON-RPC Endpoints

Overview

The endpoints described on this page provide access to information from the Core chain (layer 1).

Required Parameters

All valid JSON-RPC requests require the inclusion the parameters listed in the following table.

Name Type Description
method String Name of the endpoint
id Integer Request id (returned in the response to differentiate results from the same endpoint)
jsonrpc String JSON-RPC version (“2.0”)

Additional information may be found in the JSON-RPC 2.0 specification.

Endpoint Details

getBestBlockHash

Returns: the block hash of the chaintip
Parameters: none

Example Request and Response

SHELL

curl -k --request POST \
--url https://seed-1.testnet.networks.dash.org:1443/ \
--header 'content-type: application/json' \
--data '{

"method":"getBestBlockHash",
"id":1,
"jsonrpc":"2.0",
"params":{}

}'

JAVASCRIPT

var request = require("request");

var options = {
method: 'POST',
url: 'https://seed-1.testnet.networks.dash.org:1443',
headers: {'content-type': 'application/json'},
body: '{"method":"getBestBlockHash","id":1,"jsonrpc":"2.0"}'

(continues on next page)

84 Chapter 1. Platform docs

https://www.jsonrpc.org/specification#request_object

Dash Platform, Release latest

(continued from previous page)

};

request(options, function (error, response, body) {
if (error) throw new Error(error);

console.log(body);
});

JAVASCRIPT

// Node.js
var XMLHttpRequest = require('xhr2');
var data = '{"method":"getBestBlockHash","id":1,"jsonrpc":"2.0"}';

var xhr = new XMLHttpRequest();

xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);

}
});

xhr.open("POST", "https://seed-1.testnet.networks.dash.org:1443");
xhr.setRequestHeader("content-type", "application/json");

xhr.send(data);

PYTHON

import requests
import json

url = "https://seed-1.testnet.networks.dash.org:1443/"
headers = {'content-type': 'application/json'}

payload_json = {
"method": "getBestBlockHash",
"id": 1,
"jsonrpc": "2.0",
"params": {}

}

response = requests.request("POST", url, data=json.dumps(payload_json), headers=headers)

print(response.text)

1.26. DAPI Endpoints 85

Dash Platform, Release latest

RUBY

require 'uri'
require 'net/http'

url = URI("https://seed-1.testnet.networks.dash.org:1443/")
http = Net::HTTP.new(url.host, url.port)

request = Net::HTTP::Post.new(url)
request["content-type"] = 'application/json'

request.body = '{
"method":"getBestBlockHash",
"id":1,
"jsonrpc":"2.0",
"params":{ }

}'

response = http.request(request)
puts response.read_body

{
"jsonrpc": "2.0",
"id": 1,
"result": "0000009fd106a7aa7142925fcd311442790145a3351fa2508d9da2b3462086fd"

}

getBlockHash

Returns: the block hash for the given height
Parameters:

Name Type Required Description
height Integer Yes Block height

Example Request and Response

SHELL

curl -k --request POST \
--url https://seed-1.testnet.networks.dash.org:1443/ \
--header 'content-type: application/json' \
--data '{

"method":"getBlockHash",
"id":1,
"jsonrpc":"2.0",
"params": {
"height": 1
}

}'

86 Chapter 1. Platform docs

Dash Platform, Release latest

PYTHON

import requests
import json

url = "https://seed-1.testnet.networks.dash.org:1443/"
headers = {'content-type': 'application/json'}

payload_json = {
"method": "getBlockHash",
"id": 1,
"jsonrpc": "2.0",
"params": {

"height": 100
}

}

response = requests.request("POST", url, data=json.dumps(payload_json), headers=headers)

print(response.text)

RUBY

require 'uri'
require 'net/http'

url = URI("https://seed-1.testnet.networks.dash.org:1443/")
http = Net::HTTP.new(url.host, url.port)

request = Net::HTTP::Post.new(url)
request["content-type"] = 'application/json'

request.body = '{
"method":"getBlockHash",
"id":1,
"jsonrpc":"2.0",
"params":{

"height":100
}

}'

response = http.request(request)
puts response.read_body

{
"jsonrpc": "2.0",
"id": 1,
"result": "0000047d24635e347be3aaaeb66c26be94901a2f962feccd4f95090191f208c1"

}

1.26. DAPI Endpoints 87

Dash Platform, Release latest

getMnListDiff

Returns: a masternode list diff for the provided block hashes
Parameters:

Name Type Required Description
baseBlockHash String Yes Block hash for the starting block
blockHash String Yes Block hash for the ending block

Example Request and Response

SHELL

curl -k --request POST \
--url https://seed-1.testnet.networks.dash.org:1443/ \
--header 'content-type: application/json' \
--data '{

"method":"getMnListDiff",
"id":1,
"jsonrpc":"2.0",
"params": {
"baseBlockHash":

→˓"00000016b4d13db8395b31d87c76ca88824b26e03e54480d8c9ddf6f11857a7c",
"blockHash": "0000002266d8e7836eb116fe467597d13d9862c6612e31bbd6161c35b6485493"

}
}'

PYTHON

import requests
import json

url = "https://seed-1.testnet.networks.dash.org:1443/"
headers = {'content-type': 'application/json'}

payload_json = {
"method":"getMnListDiff",
"id":1,
"jsonrpc":"2.0",
"params": {

"baseBlockHash":
→˓"00000016b4d13db8395b31d87c76ca88824b26e03e54480d8c9ddf6f11857a7c",

"blockHash": "0000002266d8e7836eb116fe467597d13d9862c6612e31bbd6161c35b6485493"
}

}

response = requests.request("POST", url, data=json.dumps(payload_json), headers=headers)

print(response.text)

88 Chapter 1. Platform docs

Dash Platform, Release latest

RUBY

require 'uri'
require 'net/http'

url = URI("https://seed-1.testnet.networks.dash.org:1443/")
http = Net::HTTP.new(url.host, url.port)

request = Net::HTTP::Post.new(url)
request["content-type"] = 'application/json'

request.body = '{
"method":"getMnListDiff",
"id":1,
"jsonrpc":"2.0",
"params": {

"baseBlockHash":
→˓"00000016b4d13db8395b31d87c76ca88824b26e03e54480d8c9ddf6f11857a7c",

"blockHash": "0000002266d8e7836eb116fe467597d13d9862c6612e31bbd6161c35b6485493"
}

}'

response = http.request(request)
puts response.read_body

{
"jsonrpc": "2.0",
"id": 1,
"result": {
"baseBlockHash": "00000016b4d13db8395b31d87c76ca88824b26e03e54480d8c9ddf6f11857a7c",
"blockHash": "0000002266d8e7836eb116fe467597d13d9862c6612e31bbd6161c35b6485493",
"cbTxMerkleTree":

→˓"0300000003795f4c55c12757f3783a81a804585545d1844660f0b59e25a93d332bdf98a1032552fe1c2eada657f6714b14e1746a8f09b3a526e88243831133a7e25c9afcde8800af04201e85dc0cffb817c5fe7b4972ccf2647503d3d45f41304b664e8cba0107
→˓",
"cbTx":

→˓"030005000100ffffffff1202e21b0e2f5032506f6f6c2d74444153482fffffffff04cb525b96010000001976a9144f79c383bc5d3e9d4d81b98f87337cedfa78953688ac26c4609a010000001976a914243f5bceb1ae0a580f5a9415f9a015ad38477e7188ac6e710504000000001976a914badadfdebaa6d015a0299f23fbc1fcbdd72ba96f88ac00000000000000002a6a289c7178341d0097998baa6098724d78fd01b46455890203d99413e86a55ebb610000000000700000000000000260100e21b0000f02004439b25d27e07bb9afbd07db7dfc71aa91338391cef46e08488fe66bfe9
→˓",
"deletedMNs": [],
"mnList": [
{
"proRegTxHash": "682b3e58e283081c51f2e8e7a7de5c7312a2e8074affaf389fafcc39c4805404

→˓",
"confirmedHash":

→˓"00000018c824355520c6a850076c041b533d05cbe481f8187e541d7e2f856def",
"service": "64.193.62.206:19999",
"pubKeyOperator":

→˓"85f2269374676476f00068b7cb168d124b7b780a92e8564e18edf45d77497abd9debf186ee98001a0c9a6dfccbab7a0a
→˓",

"votingAddress": "yid7uAsVJzvSLrEekHuGNuY3KWCqJopyJ8",
"isValid": true,
"nVersion": 2,
"nType": 0

},
(continues on next page)

1.26. DAPI Endpoints 89

Dash Platform, Release latest

(continued from previous page)

{
"proRegTxHash": "c48a44a9493eae641bea36992bc8c27eaaa33adb1884960f55cd259608d26d2f

→˓",
"confirmedHash":

→˓"000000237725f8fe7d78153ae9c11193ee0cda18f8b48141acff8e1ac713da5b",
"service": "173.61.30.231:19013",
"pubKeyOperator":

→˓"8700add55a28ef22ec042a2f28e25fb4ef04b3024a7c56ad7eed4aebc736f312d18f355370dfb6a5fec9258f464b227e
→˓",

"votingAddress": "yTMDce5yEpiPqmgPrPmTj7yAmQPJERUSVy",
"isValid": true,
"nVersion": 2,
"nType": 0

},
{
"proRegTxHash": "9f4f9f83ecbcd5739d7f1479ee14b508f2414d044a717acba0960566c4e6091d

→˓",
"confirmedHash":

→˓"00",
"service": "45.32.211.155:19999",
"pubKeyOperator":

→˓"88e37b3fcba972fe0c2c0ea15f8285c8bfb262ad4d8a6741a530154f1abc4edd367a22abd0cb1934647f033913cca58a
→˓",

"votingAddress": "ybAZoZ6iybhEwoCfb6utGfU753R1wcQSZT",
"isValid": true,
"nVersion": 2,
"nType": 0

}
],
"nVersion": 2,
"deletedQuorums": [],
"newQuorums": [],
"merkleRootMNList": "e9bf66fe8884e046ef1c393813a91ac7dfb77dd0fb9abb077ed2259b430420f0

→˓"
}

}

Deprecated Endpoints

There are no recently deprecated endpoint, but the previous version of documentation can be viewed here.

90 Chapter 1. Platform docs

https://dashplatform.readme.io/v0.23.0/docs/reference-dapi-endpoints-json-rpc-endpoints

Dash Platform, Release latest

Code Reference

Implementation details related to the information on this page can be found in:

• The DAPI repository lib/rpcServer/commands folder

gRPC Overview

The gRPC endpoints provide access to information from Dash Platform (layer 2) as well as streaming of events related
to blocks and transactions/transitions.

Connecting to gRPC

Auto-generated Clients

Clients for a number of languages are built automatically from the protocol definitions and are available in the
packages/dapi-grpc/clients folder of the platform repository. The protocol definitions are available in the
protos folder. Pull requests are welcome to add support for additional languages that are not currently being built.

Command Line Examples

Some examples shown in the endpoint details pages use a command-line tool named gRPCurl that allows interacting
with gRPC servers in a similar way as curl does for the JSON-RPCs. Additional information may be found in the
gRPC documentation.

To use gRPCurl as shown in the detailed examples, clone the platform repository and execute the example requests
from the packages/dapi-grpc directory of that repository as shown in this example:

Clone the dapi-grpc repository
git clone https://github.com/dashpay/platform.git
cd platform/packages/dapi-grpc

Execute gRPCurl command
grpcurl -plaintext -proto protos/...

Data Encoding

The data submitted/received from the gRPC endpoints is encoded using both CBOR and Base64. Data is first encoded
with CBOR and the resulting output is then encoded in Base64 before being sent.

Canonical encoding is used for state transitions, identities, data contracts, and documents. This puts the object’s data
fields in a sorted order to ensure the same hash is produced every time regardless of the actual order received by the
encoder. Reproducible hashes are necessary to support validation of request/response data.

Libraries such as cbor (JavaScript) and cbor2 (Python) can be used to encode/decode data for DAPI gRPC endpoints.

The examples below use the response from a getIdentity gPRC request to demonstrate how to both encode data for
sending and decode received data:

1.26. DAPI Endpoints 91

https://github.com/dashevo/platform/tree/master/packages/dapi
https://github.com/dashpay/platform/tree/master/packages/dapi-grpc/clients
https://github.com/dashpay/platform/tree/master/packages/dapi-grpc/protos
https://github.com/fullstorydev/grpcurl
https://grpc.io/docs/guides/
https://github.com/dashevo/platform/
https://tools.ietf.org/html/rfc7049
https://www.npmjs.com/package/cbor
https://pypi.org/project/cbor2/

Dash Platform, Release latest

JAVASCRIPT

// NodeJS - Decode Identity
const cbor = require('cbor');

const grpc_identity_response =
→˓'o2JpZHgsQ2JZVnlvS25HeGtIYUJydWNDQWhQRUJjcHV6OGoxNWNuWVlpdjFDRUhCTnhkdHlwZQFqcHVibGljS2V5c4GkYmlkAWRkYXRheCxBbXpSMkZNNGZZd0NtWnhHWjFOMnRhMkZmdUo5NU93K0xMQXJaREx1WUJqdGR0eXBlAWlpc0VuYWJsZWT1
→˓'

const identity_cbor = Buffer.from(grpc_identity_response, 'base64').toJSON();
const identity = cbor.decode(Buffer.from(identity_cbor));

console.log('Identity details');
console.dir(identity);

PYTHON

Python - Decode Identity
from base64 import b64decode, b64encode
import json
import cbor2

grpc_identity_response =
→˓'o2JpZHgsQ2JZVnlvS25HeGtIYUJydWNDQWhQRUJjcHV6OGoxNWNuWVlpdjFDRUhCTnhkdHlwZQFqcHVibGljS2V5c4GkYmlkAWRkYXRheCxBbXpSMkZNNGZZd0NtWnhHWjFOMnRhMkZmdUo5NU93K0xMQXJaREx1WUJqdGR0eXBlAWlpc0VuYWJsZWT1
→˓'

identity_cbor = b64decode(grpc_identity_response)
identity = cbor2.loads(identity_cbor)

print('Identity details:\n{}\n'.format(json.dumps(identity, indent=2)))

PYTHON

Python - Encode Identity
from base64 import b64decode, b64encode
import json
import cbor2

Encode an identity
identity = {
"id": "CbYVyoKnGxkHaBrucCAhPEBcpuz8j15cnYYiv1CEHBNx",
"type": 1,
"publicKeys": [
{
"id": 1,
"data": "AmzR2FM4fYwCmZxGZ1N2ta2FfuJ95Ow+LLArZDLuYBjt",
"type": 1,
"isEnabled": True

}
]

(continues on next page)

92 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

}

identity_cbor = cbor2.dumps(identity)
identity_grpc = b64encode(identity_cbor)
print('Identity gRPC data: {}'.format(identity_grpc))

Core gRPC Endpoints

Please refer to the gRPC Overview for details regarding running the examples shown below, encoding/decoding the
request/response data, and clients available for several languages.

Endpoint Details

broadcastTransaction

Returns: The transaction id (TXID) if successful
Parameters:

Name Type Required Description
transaction Bytes Yes A raw transaction
allow_high_fees Boolean No Enables bypassing the high fee check
bypass_limits Boolean No

Example Request and Response

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');
const { Transaction } = require('@dashevo/dashcore-lib');

const client = new DAPIClient({
seeds: [{
host: 'seed-1.testnet.networks.dash.org',
port: 1443,

}],
});

// Replace the transaction hex below with your own transaction prior to running
const tx = Transaction(
→˓'02000000022fd1c4583099109524b8216d712373bd837d24a502414fcadd8ae94753c3d87e010000006a47304402202cbdc560898ad389005fbe231fb345da503d838cfadab738a7d2f57bdd7ff77c02206e02b9f05c3dfb380d158949407372f26fa8ecc66956297792509c2f700723d1012103422fa857d5049000c22c3188e84557da5b783c2ef54b83a76a2933a0564c22dafeffffff07e987f3bb114c4370b937915e980657e2706135e21fbd8972a5534c804d5495000000006a473044022041a69c058035a2a8c88715c018efcb77a9ee3a08b72fd24afe8591364cee8dc002203026f115ac9c7206a985f71422ac38d451bde092d708bfb81ef35b2968f4ee34012102f0ce58f50515d04d4ff01a550a4d3246fbdc9d27031ef7d883e845b6b41f0e4efeffffff0269440f00000000001976a91465f6a3d634ba58247825c6fd55174ca72fdcdbd988ac00e1f505000000001976a9144139b147b5cef5fef5bcdb02fcdf55e426f74dbb88ac4d5b0600
→˓');

client.core.broadcastTransaction(tx.toBuffer())
.then((response) => console.log(response));

1.26. DAPI Endpoints 93

Dash Platform, Release latest

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: {
CorePromiseClient,

},
} = require('@dashevo/dapi-grpc');
const { Transaction } = require('@dashevo/dashcore-lib');

const corePromiseClient = new CorePromiseClient('https://seed-1.testnet.networks.dash.
→˓org:1443');

// Replace the transaction hex below with your own transaction prior to running
const tx = Transaction(
→˓'02000000022fd1c4583099109524b8216d712373bd837d24a502414fcadd8ae94753c3d87e010000006a47304402202cbdc560898ad389005fbe231fb345da503d838cfadab738a7d2f57bdd7ff77c02206e02b9f05c3dfb380d158949407372f26fa8ecc66956297792509c2f700723d1012103422fa857d5049000c22c3188e84557da5b783c2ef54b83a76a2933a0564c22dafeffffff07e987f3bb114c4370b937915e980657e2706135e21fbd8972a5534c804d5495000000006a473044022041a69c058035a2a8c88715c018efcb77a9ee3a08b72fd24afe8591364cee8dc002203026f115ac9c7206a985f71422ac38d451bde092d708bfb81ef35b2968f4ee34012102f0ce58f50515d04d4ff01a550a4d3246fbdc9d27031ef7d883e845b6b41f0e4efeffffff0269440f00000000001976a91465f6a3d634ba58247825c6fd55174ca72fdcdbd988ac00e1f505000000001976a9144139b147b5cef5fef5bcdb02fcdf55e426f74dbb88ac4d5b0600
→˓');

corePromiseClient.client.broadcastTransaction({ transaction: tx.toBuffer() })
.then((response) => console.log(response));

JSON

{
"transactionId": "552eaf24a60014edcbbb253dbc4dd68766532cab3854b44face051cedcfd578f"

}

getStatus

Returns: Status information from the Core chain
Parameters: None

Example Request and Response

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');

const client = new DAPIClient({
seeds: [{
host: 'seed-1.testnet.networks.dash.org',
port: 1443,

}],
});

client.core.getStatus()
.then((response) => console.log(response));

94 Chapter 1. Platform docs

Dash Platform, Release latest

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: {
GetStatusRequest,
CorePromiseClient,

},
} = require('@dashevo/dapi-grpc');

const corePromiseClient = new CorePromiseClient('https://seed-1.testnet.networks.dash.
→˓org:1443');

corePromiseClient.client.getStatus(new GetStatusRequest())
.then((response) => console.log(response));

SHELL

gRPCurl
Run in the platform repository's `packages/dapi-grpc/` directory
grpcurl -proto protos/core/v0/core.proto \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Core/getStatus

Note: The gRPCurl response bestBlockHash, chainWork, and proTxHash data is Base64 encoded.

JSON

// Response (JavaScript)
{
"version":{
"protocol":70227,
"software":190100,
"agent":"/Dash Core:19.1.0(dcg-masternode-27)/"

},
"time":{
"now":1684860969,
"offset":0,
"median":1684860246

},
"status":"READY",
"syncProgress":0.9999992137956843,
"chain":{
"name":"test",
"headersCount":892412,
"blocksCount":892412,
"bestBlockHash":"<Buffer 00 00 00 96 7b 75 05 9c ad ff 07 71 89 74 1b 0a 8f f1 77 62␣

→˓1d 3e 6e 45 e9 32 02 55 19 fe df a9>",
"difficulty":0.003254173843543036,

(continues on next page)

1.26. DAPI Endpoints 95

Dash Platform, Release latest

(continued from previous page)

"chainWork":"<Buffer 00␣
→˓00 00 00 02 d6 8d 0c 89 2a 87 47>",
"isSynced":true,
"syncProgress":0.9999992137956843

},
"masternode":{
"status":"READY",
"proTxHash":"<Buffer 3b 27 b5 ea 14 6a d9 d1 ff 6b c7 14 7e f2 5e f7 33 01 df 98 cc␣

→˓2c 77 23 67 3c 3a 0f 39 fd b0 7a>",
"posePenalty":0,
"isSynced":true,
"syncProgress":1

},
"network":{
"peersCount":145,
"fee":{
"relay":0.00001,
"incremental":0.00001

}
}

}

JSON

// Response (gRPCurl)
{
"version": {
"protocol": 70227,
"software": 190000,
"agent": "/Dash Core:19.0.0/"

},
"time": {
"now": 1684357132,
"median": 1684356285

},
"status": "READY",
"syncProgress": 0.9999996650927735,
"chain": {
"name": "test",
"headersCount": 888853,
"blocksCount": 888853,
"bestBlockHash": "AAAAtZ1kS2uIxOX4u1CaHqEPQhOVs23wPK9TjBZnZAI=",
"difficulty": 0.003153826459898978,
"chainWork": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtaNAXYoQDE=",
"isSynced": true,
"syncProgress": 0.9999996650927735

},
"masternode": {
"status": "READY",
"proTxHash": "vcAa/9GeHoyawgatmvVCbavRGA3uUtnDigwp7EqRyn0=",

(continues on next page)

96 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

"isSynced": true,
"syncProgress": 1

},
"network": {
"peersCount": 147,
"fee": {
"relay": 1e-05,
"incremental": 1e-05

}
}

}

getBlock

Returns: A raw block
Parameters:

Name Type Required Description
One of the following:

hash Bytes No Return the block matching the block hash provided
height Integer No Return the block matching the block height provided

Example Request and Response

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');

const client = new DAPIClient({
seeds: [{
host: 'seed-1.testnet.networks.dash.org',
port: 1443,

}],
});

client.core.getBlockByHeight(1)
.then((response) => console.log(response.toString('hex')));

1.26. DAPI Endpoints 97

Dash Platform, Release latest

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: {
CorePromiseClient,

},
} = require('@dashevo/dapi-grpc');

const corePromiseClient = new CorePromiseClient('https://seed-1.testnet.networks.dash.
→˓org:1443');

corePromiseClient.client.getBlock({ height: 1 })
.then((response) => console.log(response.block.toString('hex')));

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: {
CorePromiseClient,

},
} = require('@dashevo/dapi-grpc');

const corePromiseClient = new CorePromiseClient('https://seed-1.testnet.networks.dash.
→˓org:1443');

corePromiseClient.client.getBlock({
hash: '0000047d24635e347be3aaaeb66c26be94901a2f962feccd4f95090191f208c1',

}).then((response) => {
console.log(response.block.toString('hex'));

});

SHELL

gRPCurl
grpcurl -proto protos/core/v0/core.proto \

-d '{
"height":1
}' \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Core/getBlock

Block Encoding

Note: The gRPCurl response block data is Base64 encoded

98 Chapter 1. Platform docs

Dash Platform, Release latest

SHELL

Response (JavaScript)
020000002cbcf83b62913d56f605c0e581a48872839428c92e5eb76cd7ad94bcaf0b00007f11dcce14075520e8f74cc4ddf092b4e26ebd23b8d8665a1ae5bfc41b58fdb4c3a95e53ffff0f1ef37a000001010000000100ffffffff0a510101062f503253482fffffffff0100743ba40b0000002321020131f38ae3eb0714531dbfc3f45491b4131d1211e3777177636388bb5a74c3e4ac00000000

JSON

// Response (gRPCurl)
{
"block":

→˓"AgAAACy8+DtikT1W9gXA5YGkiHKDlCjJLl63bNetlLyvCwAAfxHczhQHVSDo90zE3fCStOJuvSO42GZaGuW/
→˓xBtY/bTDqV5T//8PHvN6AAABAQAAAAEAAP////
→˓8KUQEBBi9QMlNIL/////8BAHQ7pAsAAAAjIQIBMfOK4+sHFFMdv8P0VJG0Ex0SEeN3cXdjY4i7WnTD5KwAAAAA"
}

getTransaction

Returns: A raw transaction
Parameters:

Name Type Required Description
id String Yes A transaction id (TXID)

Example Request and Response

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');

const client = new DAPIClient({
seeds: [{
host: 'seed-1.testnet.networks.dash.org',
port: 1443,

}],
});

const txid = '4004d3f9f1b688f2babb1f98ea48e1472be51e29712f942fc379c6e996cdd308';
client.core.getTransaction(txid)
.then((response) => console.dir(response, { length: 0 }));

1.26. DAPI Endpoints 99

Dash Platform, Release latest

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: {
CorePromiseClient,

},
} = require('@dashevo/dapi-grpc');

const corePromiseClient = new CorePromiseClient('https://seed-1.testnet.networks.dash.
→˓org:1443');

const txid = '4004d3f9f1b688f2babb1f98ea48e1472be51e29712f942fc379c6e996cdd308';

corePromiseClient.client.getTransaction({ id: txid })
.then((response) => console.dir(response, { length: 0 }));

SHELL

gRPCurl
grpcurl -proto protos/core/v0/core.proto \

-d '{
"id":"4004d3f9f1b688f2babb1f98ea48e1472be51e29712f942fc379c6e996cdd308"
}' \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Core/getTransaction

Transaction Encoding

Note: The gRPCurl response transaction and blockHash data are Base64 encoded

TEXT

Response (JavaScript)
GetTransactionResponse {
transaction: Buffer(196) [Uint8Array] [

3, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 255, 6, 3, 194, 90, 6, 1, 9,

255, 255, 255, 255, 2, 238, 252, 207, 49, 0, 0, 0,
0, 25, 118, 169, 20, 126, 178, 93, 197, 175, 71, 45,

107, 241, 154, 135, 122, 150, 240, 167, 7, 194, 198, 27,
118, 136, 172, 101, 251, 183, 74, 0, 0, 0, 0, 25,
118, 169, 20, 30,
... 96 more items

],
blockHash: Buffer(32) [Uint8Array] [

0, 0, 2, 9, 133, 199, 245, 83,
191, 120, 191, 203, 109, 166, 9, 115,
193, 152, 249, 11, 7, 245, 126, 31,

(continues on next page)

100 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

55, 65, 10, 150, 205, 150, 131, 213
],
height: 416450,
confirmations: 386421,
instantLocked: false,
chainLocked: true

}

JSON

// Response (gRPCurl)
{
"transaction": "AwAFAAEAAP////8GA8JaBgEJ/////

→˓wLu/M8xAAAAABl2qRR+sl3Fr0cta/
→˓Gah3qW8KcHwsYbdoisZfu3SgAAAAAZdqkUHsXGbpeJxlWuBo01CItAczRf4LCIrAAAAABGAgDCWgYA3zSmucmdu7+CaY+6n4aGHySJHhbAxeiB3gNMGSIgYA1c6q3De0wxbi7HpAf4g4BgSUqhmkAxVflcQyddo+2zGA==
→˓",
"blockHash": "AAACCYXH9VO/eL/LbaYJc8GY+QsH9X4fN0EKls2Wg9U=",
"height": 416450,
"confirmations": 472404,
"isChainLocked": true

}

subscribeToBlockHeadersWithChainLocks

This endpoint helps support simplified payment verification (SPV) via DAPI by providing access to block headers
which can then be used to verify transactions and simplified masternode lists.

Returns: streams the requested block header information
Parameters:

Name Type Re-
quired

Description

———-

One of the fol-
lowing:
from_block_hash Bytes No Return records beginning with the block hash provided
from_block_heightInte-

ger
No Return records beginning with the block height provided

———-

count Inte-
ger

No Number of blocks to sync. If set to 0 syncing is continuously sends new
data as well (default: 0)

** Example Request and Response **

1.26. DAPI Endpoints 101

https://docs.dash.org/projects/core/en/stable/docs/guide/operating-modes-simplified-payment-verification-spv.html

Dash Platform, Release latest

SHELL

gRPCurl
grpcurl -proto protos/core/v0/core.proto \

-d '{
"from_block_height": 1,
"count": 1

}' \
seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Core/subscribeToBlockHeadersWithChainLocks

Note: The gRPCurl response chainlock and headers data is Base64 encoded

JSON

// Response (gRPCurl)
{
"chainLock":

→˓"FZANAAJkZxaMU6888G2zlRNCD6EemlC7+OXEiGtLZJ21AAAAo7qvfeETyNxWVog47Yiyx9j9FSUCVkUWBrn0ZAfIbeU75kiccv4ilNmj1Peavv1oD+Ti9dqJYy9K8/
→˓MuDt7rYnVfmPWIUj03QYWKzQKr/PaMkavTaa+PCOrqQYxcLX/s"
}
{
"blockHeaders": {
"headers": [

→˓"AgAAACy8+DtikT1W9gXA5YGkiHKDlCjJLl63bNetlLyvCwAAfxHczhQHVSDo90zE3fCStOJuvSO42GZaGuW/
→˓xBtY/bTDqV5T//8PHvN6AAA="

]
}

}

subscribeToTransactionsWithProofs

Returns: streams the requested transaction information
Parameters:

102 Chapter 1. Platform docs

Dash Platform, Release latest

Name Type Re-
quired

Description

bloom_filter.
v_data

Bytes Yes The filter itself is simply a bit field of arbitrary byte-aligned size. The
maximum size is 36,000 bytes

bloom_filter.
n_hash_funcs

Inte-
ger

Yes The number of hash functions to use in this filter. The maximum value
allowed in this field is 50

bloom_filter.
n_tweak

Inte-
ger

Yes A random value to add to the seed value in the hash function used by
the bloom filter

bloom_filter.
n_flags

Inte-
ger

Yes A set of flags that control how matched items are added to the filter

———-

One of the following:

from_block_hash Bytes No Return records beginning with the block hash provided
from_block_height Inte-

ger
No Return records beginning with the block height provided

———-

count Inte-
ger

No Number of blocks to sync. If set to 0 syncing is continuously sends
new data as well (default: 0)

send_transaction_hashes
*

Boolean No

** Example Request and Response **

SHELL

gRPCurl
grpcurl -proto protos/core/v0/core.proto \

-d '{
"from_block_height": 1,
"count": 1,
"bloom_filter": {
"n_hash_funcs": 11,
"v_data": "",
"n_tweak": 0,
"n_flags": 0

}
}' \
seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Core/subscribeToTransactionsWithProofs

Note: The gRPCurl response transactions and rawMerkleBlock data is Base64 encoded

1.26. DAPI Endpoints 103

Dash Platform, Release latest

JSON

// Response (gRPCurl)
{
"rawTransactions": {
"transactions": [

"AQAAAAEAAP////8KUQEBBi9QMlNIL/////
→˓8BAHQ7pAsAAAAjIQIBMfOK4+sHFFMdv8P0VJG0Ex0SEeN3cXdjY4i7WnTD5KwAAAAA"

]
}

}
{
"rawMerkleBlock":

→˓"AgAAACy8+DtikT1W9gXA5YGkiHKDlCjJLl63bNetlLyvCwAAfxHczhQHVSDo90zE3fCStOJuvSO42GZaGuW/
→˓xBtY/bTDqV5T//8PHvN6AAABAAAAAX8R3M4UB1Ug6PdMxN3wkrTibr0juNhmWhrlv8QbWP20AQE="
}

Deprecated Endpoints

There are no recently deprecated endpoints, but the previous version of documentation can be viewed here.

Code Reference

Implementation details related to the information on this page can be found in:

• The Platform repository packages/dapi/lib/grpcServer/handlers/core folder

• The Platform repository packages/dapi-grpc/protos folder

Platform gRPC Endpoints

Please refer to the gRPC Overview for details regarding running the examples shown below, encoding/decoding the
request/response data, and clients available for several languages.

Data Proofs and Metadata

Since Dash Platform 0.20.0, Platform gRPC endpoints can provide proofs so the data returned for a request can be
verified as being valid. Full support is not yet available in the JavaScript client, but can be used via the low level
dapi-grpc library.

Some additional metadata is also provided with responses:

Metadata field Description
height Last committed platform chain height
coreChainLockedHeight Height of the most recent ChainLock on the core chain
timeMs Unix timestamp in milliseconds for the response
protocolVersion Platform protocol version

104 Chapter 1. Platform docs

https://dashplatform.readme.io/v0.23.0/docs/reference-dapi-endpoints-core-grpc-endpoints
https://github.com/dashevo/platform/tree/master/packages/dapi
https://github.com/dashevo/platform/tree/master/packages/dapi-grpc
https://github.com/dashpay/platform/blob/master/packages/dapi-grpc/protos/platform/v0/platform.proto#L17-L22
https://github.com/dashevo/platform/tree/master/packages/dapi-grpc
https://github.com/dashevo/platform/blob/master/packages/dapi-grpc/protos/platform/v0/platform.proto#L30-L33

Dash Platform, Release latest

Endpoint Details

broadcastStateTransition

Note: The waitForStateTransitionResult endpoint should be used in conjunction with this one for
instances where proof of block confirmation is required.

Broadcasts a state transition to the platform via DAPI to make a change to layer 2 data. The
broadcastStateTransition call returns once the state transition has been accepted into the mempool.

Returns: Nothing or error

Parameters:

Name Type Required Description
state_transition Bytes (Base64) Yes A state transition

Response: No response except on error

getIdentity

Breaking changes

As of Dash Platform 0.24 the protocolVersion is no longer included in the CBOR-encoded data. It is
instead prepended as a varint to the data following CBOR encoding.

Returns: Identity information for the requested identity
Parameters:

Name Type Required Description
id Bytes Yes An identity id
prove Boolean No Set to true to receive a proof that contains the requested identity

Note: When requesting proofs, the data requested will be encoded as part of the proof in the response.

** Example Request and Response **

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');
const Identifier = require('@dashevo/dpp/lib/Identifier');
const cbor = require('cbor');
const varint = require('varint');

const client = new DAPIClient();

const identityId = Identifier.from('4EfA9Jrvv3nnCFdSf7fad59851iiTRZ6Wcu6YVJ4iSeF');
client.platform.getIdentity(identityId).then((response) => {
// Strip off protocol version (leading varint) and decode

(continues on next page)

1.26. DAPI Endpoints 105

Dash Platform, Release latest

(continued from previous page)

const identityBuffer = Buffer.from(response.getIdentity());
const protocolVersion = varint.decode(identityBuffer);
const identity = cbor.decode(

identityBuffer.slice(varint.encodingLength(protocolVersion), identityBuffer.length),
);
console.log(identity);

});

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: { PlatformPromiseClient, GetIdentityRequest },
} = require('@dashevo/dapi-grpc');
const Identifier = require('@dashevo/dpp/lib/Identifier');
const cbor = require('cbor');
const varint = require('varint');

const platformPromiseClient = new PlatformPromiseClient(
'https://seed-1.testnet.networks.dash.org:1443',

);

const id = Identifier.from('4EfA9Jrvv3nnCFdSf7fad59851iiTRZ6Wcu6YVJ4iSeF');
const idBuffer = Buffer.from(id);
const getIdentityRequest = new GetIdentityRequest();
getIdentityRequest.setId(idBuffer);
getIdentityRequest.setProve(false);

platformPromiseClient.getIdentity(getIdentityRequest)
.then((response) => {
// Strip off protocol version (leading varint) and decode
const identityBuffer = Buffer.from(response.getIdentity());
const protocolVersion = varint.decode(identityBuffer);
const decodedIdentity = cbor.decode(
identityBuffer.slice(varint.encodingLength(protocolVersion), identityBuffer.

→˓length),
);
console.log(decodedIdentity);

})
.catch((e) => console.error(e));

106 Chapter 1. Platform docs

Dash Platform, Release latest

SHELL

gRPCurl
`id` must be represented in base64
grpcurl -proto protos/platform/v0/platform.proto \
-d '{
"id":"MBLBm5jsADOt2zbNZLf1EGcPKjUaQwS19plBRChu/aw="
}' \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Platform/getIdentity

JSON

// Response (JavaScript)
{
"id": "<Buffer 30 12 c1 9b 98 ec 00 33 ad db 36 cd 64 b7 f5 10 67 0f 2a 35 1a 43 04 b5␣

→˓f6 99 41 44 28 6e fd ac>",
"balance": 5255234422,
"revision": 0,
"publicKeys": [
{
"id": 0,
"data": "<Buffer 02 c8 b4 74 7b 52 8c ac 5f dd f7 a6 cc 63 70 2e e0 4e d7 d1 33 29␣

→˓04 e0 85 10 34 3e a0 0d ce 54 6a>",
"type": 0,
"purpose": 0,
"readOnly": false,
"securityLevel": 0

},
{
"id": 1,
"data": "<Buffer 02 01 ee 28 f8 4f 54 85 39 05 67 e9 39 c2 b5 86 01 0b 63 a6 9e c9␣

→˓2c ab 53 5d c9 6a 8c 71 91 36 02>",
"type": 0,
"purpose": 0,
"readOnly": false,
"securityLevel": 2

}
]

}

JSON

// Response (gRPCurl)
{
"identity":

→˓"AaRiaWRYIDASwZuY7AAzrds2zWS39RBnDyo1GkMEtfaZQUQobv2sZ2JhbGFuY2UbAAAAATk8g3ZocmV2aXNpb24AanB1YmxpY0tleXOCpmJpZABkZGF0YVghAsi0dHtSjKxf3femzGNwLuBO19EzKQTghRA0PqANzlRqZHR5cGUAZ3B1cnBvc2UAaHJlYWRPbmx59G1zZWN1cml0eUxldmVsAKZiaWQBZGRhdGFYIQIB7ij4T1SFOQVn6TnCtYYBC2Omnsksq1NdyWqMcZE2AmR0eXBlAGdwdXJwb3NlAGhyZWFkT25sefRtc2VjdXJpdHlMZXZlbAI=
→˓",
"metadata": {
"height": "4217",

(continues on next page)

1.26. DAPI Endpoints 107

Dash Platform, Release latest

(continued from previous page)

"coreChainLockedHeight": 858833,
"timeMs": "1688058824358",
"protocolVersion": 1

}
}

getIdentitiesByPublicKeyHashes

Returns: Identity an array of identities associated with the provided public key hashes
Parameters:

Name Type Re-
quired

Description

public_key_hashes Bytes Yes Public key hashes (sha256-ripemd160) of identity public keys
prove Boolean No Set to true to receive a proof that contains the requested identities

Note: When requesting proofs, the data requested will be encoded as part of the proof in the response.

Public key hash

Note: the hash must be done using all fields of the identity public key object - e.g.

{
"id": 0,
"type": 0,
"purpose": 0,
"securityLevel": 0,
"data": "A2GTAJk9eAWkMXVCb+rRKXH99POtR5OaW6zqZl7/yozp",
"readOnly": false

}

When using the js-dpp library, the hash can be accessed via the IdentityPublicKey object’s hash method
(e.g. identity.getPublicKeyById(0).hash()).

** Example Request and Response **

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');
const DashPlatformProtocol = require('@dashevo/dpp');

const client = new DAPIClient();
const dpp = new DashPlatformProtocol();

const publicKeyHash = 'b8d1591aa74d440e0af9c0be16c55bbc141847f7';
const publicKeysBuffer = [Buffer.from(publicKeyHash, 'hex')];

dpp.initialize().then(() => {
client.platform.getIdentitiesByPublicKeyHashes(publicKeysBuffer)

(continues on next page)

108 Chapter 1. Platform docs

https://github.com/dashevo/platform/blob/master/packages/js-dpp/lib/identity/IdentityPublicKey.js

Dash Platform, Release latest

(continued from previous page)

.then((response) => {
const retrievedIdentity = dpp.identity.createFromBuffer(response.identities[0]);
console.log(retrievedIdentity.toJSON());

});
});

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: { PlatformPromiseClient, GetIdentitiesByPublicKeyHashesRequest },
} = require('@dashevo/dapi-grpc');
const DashPlatformProtocol = require('@dashevo/dpp');

const dpp = new DashPlatformProtocol();

dpp.initialize()
.then(() => {
const platformPromiseClient = new PlatformPromiseClient(
'https://seed-1.testnet.networks.dash.org:1443',

);

const publicKeyHash = 'b8d1591aa74d440e0af9c0be16c55bbc141847f7';
const publicKeysBuffer = [Buffer.from(publicKeyHash, 'hex')];

const getIdentitiesByPublicKeyHashesRequest = new␣
→˓GetIdentitiesByPublicKeyHashesRequest();

getIdentitiesByPublicKeyHashesRequest.setPublicKeyHashesList(publicKeysBuffer);

platformPromiseClient.
→˓getIdentitiesByPublicKeyHashes(getIdentitiesByPublicKeyHashesRequest)

.then((response) => {
const identitiesResponse = response.getIdentitiesList();

console.log(dpp.identity.createFromBuffer(Buffer.
→˓from(identitiesResponse[0])).toJSON());

})
.catch((e) => console.error(e));

});

SHELL

gRPCurl
`public_key_hashes` must be represented in base64
grpcurl -proto protos/platform/v0/platform.proto \

-d '{
"public_key_hashes":"uNFZGqdNRA4K+cC+FsVbvBQYR/c="

}' \
seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Platform/getIdentitiesByPublicKeyHashes

1.26. DAPI Endpoints 109

Dash Platform, Release latest

JSON

// Response (JavaScript)
{
"protocolVersion": 1,
"id": "4EfA9Jrvv3nnCFdSf7fad59851iiTRZ6Wcu6YVJ4iSeF",
"publicKeys": [
{
"id": 0,
"type": 0,
"purpose": 0,
"securityLevel": 0,
"data": "Asi0dHtSjKxf3femzGNwLuBO19EzKQTghRA0PqANzlRq",
"readOnly": false

},
{
"id": 1,
"type": 0,
"purpose": 0,
"securityLevel": 2,
"data": "AgHuKPhPVIU5BWfpOcK1hgELY6aeySyrU13JaoxxkTYC",
"readOnly": false

}
],
"balance": 5255234422,
"revision": 0

}

JSON

// Response (gRPCurl)
{
"identities": [

→˓"AaRiaWRYIDASwZuY7AAzrds2zWS39RBnDyo1GkMEtfaZQUQobv2sZ2JhbGFuY2UbAAAAATk8g3ZocmV2aXNpb24AanB1YmxpY0tleXOCpmJpZABkZGF0YVghAsi0dHtSjKxf3femzGNwLuBO19EzKQTghRA0PqANzlRqZHR5cGUAZ3B1cnBvc2UAaHJlYWRPbmx59G1zZWN1cml0eUxldmVsAKZiaWQBZGRhdGFYIQIB7ij4T1SFOQVn6TnCtYYBC2Omnsksq1NdyWqMcZE2AmR0eXBlAGdwdXJwb3NlAGhyZWFkT25sefRtc2VjdXJpdHlMZXZlbAI=
→˓"
],
"metadata": {
"height": "4216",
"coreChainLockedHeight": 858832,
"timeMs": "1688058626337",
"protocolVersion": 1

}
}

110 Chapter 1. Platform docs

Dash Platform, Release latest

getDataContract

Returns: Data Contract information for the requested data contract
Parameters:

Name Type Required Description
id Bytes Yes A data contract id
prove Boolean No Set to true to receive a proof that contains the requested data contract

Note: When requesting proofs, the data requested will be encoded as part of the proof in the response.

** Example Request and Response **

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');
const Identifier = require('@dashevo/dpp/lib/Identifier');
const cbor = require('cbor');
const varint = require('varint');

const client = new DAPIClient();

const contractId = Identifier.from('GWRSAVFMjXx8HpQFaNJMqBV7MBgMK4br5UESsB4S31Ec');
client.platform.getDataContract(contractId).then((response) => {

// Strip off protocol version (leading varint) and decode
const contractBuffer = Buffer.from(response.getDataContract());
const protocolVersion = varint.decode(contractBuffer);
const contract = cbor.decode(
contractBuffer.slice(varint.encodingLength(protocolVersion), contractBuffer.

→˓length),
);

console.dir(contract, { depth: 10 });
});

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: { PlatformPromiseClient, GetDataContractRequest },
} = require('@dashevo/dapi-grpc');
const Identifier = require('@dashevo/dpp/lib/Identifier');
const cbor = require('cbor');
const varint = require('varint');

const platformPromiseClient = new PlatformPromiseClient(
'https://seed-1.testnet.networks.dash.org:1443',

);

(continues on next page)

1.26. DAPI Endpoints 111

Dash Platform, Release latest

(continued from previous page)

const contractId = Identifier.from('GWRSAVFMjXx8HpQFaNJMqBV7MBgMK4br5UESsB4S31Ec');
const contractIdBuffer = Buffer.from(contractId);
const getDataContractRequest = new GetDataContractRequest();
getDataContractRequest.setId(contractIdBuffer);

platformPromiseClient.getDataContract(getDataContractRequest)
.then((response) => {
// Strip off protocol version (leading varint) and decode
const contractBuffer = Buffer.from(response.getDataContract());
const protocolVersion = varint.decode(contractBuffer);
const decodedDataContract = cbor.decode(
contractBuffer.slice(varint.encodingLength(protocolVersion), contractBuffer.

→˓length),
);
console.dir(decodedDataContract, { depth: 5 });

})
.catch((e) => console.error(e));

SHELL

gRPCurl
`id` must be represented in base64
grpcurl -proto protos/platform/v0/platform.proto \
-d '{
"id":"5mjGWa9mruHnLBht3ntbfgodcSoJxA1XIfYiv1PFMVU="
}' \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Platform/getDataContract

JSON

// Response (JavaScript)
{
"$id": "Buffer(32) [Uint8Array] [
230, 104, 198, 89, 175, 102, 174, 225,
231, 44, 24, 109, 222, 123, 91, 126,
10, 29, 113, 42, 9, 196, 13, 87,
33, 246, 34, 191, 83, 197, 49, 85

]",
"$schema": "https://schema.dash.org/dpp-0-4-0/meta/data-contract",
"ownerId": "Buffer(32) [Uint8Array] [

48, 18, 193, 155, 152, 236, 0, 51,
173, 219, 54, 205, 100, 183, 245, 16,
103, 15, 42, 53, 26, 67, 4, 181,
246, 153, 65, 68, 40, 110, 253, 172

]",
"version": 1,
"documents": {
"domain": {

(continues on next page)

112 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

"type": "object",
"indices": [

{
"name": "parentNameAndLabel",
"unique": true,
"properties": [
{ "normalizedParentDomainName": "asc" },
{ "normalizedLabel": "asc" }

]
},
{
"name": "dashIdentityId",
"unique": true,
"properties": [{ "records.dashUniqueIdentityId": "asc" }]

},
{
"name": "dashAlias",
"properties": [{ "records.dashAliasIdentityId": "asc" }]

}
],
"$comment": "In order to register a domain you need to create a preorder. The␣

→˓preorder step is needed to prevent man-in-the-middle attacks. normalizedLabel + '.' +␣
→˓normalizedParentDomain must not be longer than 253 chars length as defined by RFC 1035.
→˓ Domain documents are immutable: modification and deletion are restricted",

"required": [
"label",
"normalizedLabel",
"normalizedParentDomainName",
"preorderSalt",
"records",
"subdomainRules"

],
"properties": {
"label": {
"type": "string",
"pattern": "^[a-zA-Z0-9][a-zA-Z0-9-]{0,61}[a-zA-Z0-9]$",
"maxLength": 63,
"minLength": 3,
"description": "Domain label. e.g. 'Bob'."

},
"records": {
"type": "object",
"$comment": "Constraint with max and min properties ensure that only one␣

→˓identity record is used - either a `dashUniqueIdentityId` or a `dashAliasIdentityId`",
"properties": {
"dashAliasIdentityId": {
"type": "array",
"$comment": "Must be equal to the document owner",
"maxItems": 32,
"minItems": 32,
"byteArray": true,
"description": "Identity ID to be used to create alias names for the␣

(continues on next page)

1.26. DAPI Endpoints 113

Dash Platform, Release latest

(continued from previous page)

→˓Identity",
"contentMediaType": "application/x.dash.dpp.identifier"

},
"dashUniqueIdentityId": {
"type": "array",
"$comment": "Must be equal to the document owner",
"maxItems": 32,
"minItems": 32,
"byteArray": true,
"description": "Identity ID to be used to create the primary name the␣

→˓Identity",
"contentMediaType": "application/x.dash.dpp.identifier"

}
},
"maxProperties": 1,
"minProperties": 1,
"additionalProperties": false

},
"preorderSalt": {
"type": "array",
"maxItems": 32,
"minItems": 32,
"byteArray": true,
"description": "Salt used in the preorder document"

},
"subdomainRules": {
"type": "object",
"required": ["allowSubdomains"],
"properties": {
"allowSubdomains": {
"type": "boolean",
"$comment": "Only the domain owner is allowed to create subdomains for non␣

→˓top-level domains",
"description": "This option defines who can create subdomains: true -␣

→˓anyone; false - only the domain owner"
}

},
"description": "Subdomain rules allow domain owners to define rules for␣

→˓subdomains",
"additionalProperties": false

},
"normalizedLabel": {
"type": "string",
"pattern": "^[a-z0-9][a-z0-9-]{0,61}[a-z0-9]$",
"$comment": "Must be equal to the label in lowercase. This property will be␣

→˓deprecated due to case insensitive indices",
"maxLength": 63,
"description": "Domain label in lowercase for case-insensitive uniqueness␣

→˓validation. e.g. 'bob'"
},
"normalizedParentDomainName": {
"type": "string",

(continues on next page)

114 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

"pattern": "^$|^[a-z0-9][a-z0-9-\\.]{0,61}[a-z0-9]$",
"$comment": "Must either be equal to an existing domain or empty to create a␣

→˓top level domain. Only the data contract owner can create top level domains.",
"maxLength": 63,
"minLength": 0,
"description": "A full parent domain name in lowercase for case-insensitive␣

→˓uniqueness validation. e.g. 'dash'"
}

},
"additionalProperties": false

},
"preorder": {
"type": "object",
"indices": [

{
"name": "saltedHash",
"unique": true,
"properties": [{ "saltedDomainHash": "asc" }]

}
],
"$comment": "Preorder documents are immutable: modification and deletion are␣

→˓restricted",
"required": ["saltedDomainHash"],
"properties": {
"saltedDomainHash": {
"type": "array",
"maxItems": 32,
"minItems": 32,
"byteArray": true,
"description": "Double sha-256 of the concatenation of a 32 byte random salt␣

→˓and a normalized domain name"
}

},
"additionalProperties": false

}
}

}

JSON

// Response (gRPCurl)
{
"dataContract": "AaVjJGlkWCDmaMZZr2au4ecsGG3ee1t+Ch1xKgnEDVch9iK/

→˓U8UxVWckc2NoZW1heDRodHRwczovL3NjaGVtYS5kYXNoLm9yZy9kcHAtMC00LTAvbWV0YS9kYXRhLWNvbnRyYWN0Z293bmVySWRYIDASwZuY7AAzrds2zWS39RBnDyo1GkMEtfaZQUQobv2sZ3ZlcnNpb24BaWRvY3VtZW50c6JmZG9tYWlupmR0eXBlZm9iamVjdGdpbmRpY2Vzg6NkbmFtZXJwYXJlbnROYW1lQW5kTGFiZWxmdW5pcXVl9Wpwcm9wZXJ0aWVzgqF4Gm5vcm1hbGl6ZWRQYXJlbnREb21haW5OYW1lY2FzY6Fvbm9ybWFsaXplZExhYmVsY2FzY6NkbmFtZW5kYXNoSWRlbnRpdHlJZGZ1bmlxdWX1anByb3BlcnRpZXOBoXgccmVjb3Jkcy5kYXNoVW5pcXVlSWRlbnRpdHlJZGNhc2OiZG5hbWVpZGFzaEFsaWFzanByb3BlcnRpZXOBoXgbcmVjb3Jkcy5kYXNoQWxpYXNJZGVudGl0eUlkY2FzY2gkY29tbWVudHkBN0luIG9yZGVyIHRvIHJlZ2lzdGVyIGEgZG9tYWluIHlvdSBuZWVkIHRvIGNyZWF0ZSBhIHByZW9yZGVyLiBUaGUgcHJlb3JkZXIgc3RlcCBpcyBuZWVkZWQgdG8gcHJldmVudCBtYW4taW4tdGhlLW1pZGRsZSBhdHRhY2tzLiBub3JtYWxpemVkTGFiZWwgKyAnLicgKyBub3JtYWxpemVkUGFyZW50RG9tYWluIG11c3Qgbm90IGJlIGxvbmdlciB0aGFuIDI1MyBjaGFycyBsZW5ndGggYXMgZGVmaW5lZCBieSBSRkMgMTAzNS4gRG9tYWluIGRvY3VtZW50cyBhcmUgaW1tdXRhYmxlOiBtb2RpZmljYXRpb24gYW5kIGRlbGV0aW9uIGFyZSByZXN0cmljdGVkaHJlcXVpcmVkhmVsYWJlbG9ub3JtYWxpemVkTGFiZWx4Gm5vcm1hbGl6ZWRQYXJlbnREb21haW5OYW1lbHByZW9yZGVyU2FsdGdyZWNvcmRzbnN1YmRvbWFpblJ1bGVzanByb3BlcnRpZXOmZWxhYmVspWR0eXBlZnN0cmluZ2dwYXR0ZXJueCpeW2EtekEtWjAtOV1bYS16QS1aMC05LV17MCw2MX1bYS16QS1aMC05XSRpbWF4TGVuZ3RoGD9pbWluTGVuZ3RoA2tkZXNjcmlwdGlvbngZRG9tYWluIGxhYmVsLiBlLmcuICdCb2InLmdyZWNvcmRzpmR0eXBlZm9iamVjdGgkY29tbWVudHiQQ29uc3RyYWludCB3aXRoIG1heCBhbmQgbWluIHByb3BlcnRpZXMgZW5zdXJlIHRoYXQgb25seSBvbmUgaWRlbnRpdHkgcmVjb3JkIGlzIHVzZWQgLSBlaXRoZXIgYSBgZGFzaFVuaXF1ZUlkZW50aXR5SWRgIG9yIGEgYGRhc2hBbGlhc0lkZW50aXR5SWRganByb3BlcnRpZXOic2Rhc2hBbGlhc0lkZW50aXR5SWSnZHR5cGVlYXJyYXloJGNvbW1lbnR4I011c3QgYmUgZXF1YWwgdG8gdGhlIGRvY3VtZW50IG93bmVyaG1heEl0ZW1zGCBobWluSXRlbXMYIGlieXRlQXJyYXn1a2Rlc2NyaXB0aW9ueD1JZGVudGl0eSBJRCB0byBiZSB1c2VkIHRvIGNyZWF0ZSBhbGlhcyBuYW1lcyBmb3IgdGhlIElkZW50aXR5cGNvbnRlbnRNZWRpYVR5cGV4IWFwcGxpY2F0aW9uL3guZGFzaC5kcHAuaWRlbnRpZmllcnRkYXNoVW5pcXVlSWRlbnRpdHlJZKdkdHlwZWVhcnJheWgkY29tbWVudHgjTXVzdCBiZSBlcXVhbCB0byB0aGUgZG9jdW1lbnQgb3duZXJobWF4SXRlbXMYIGhtaW5JdGVtcxggaWJ5dGVBcnJhefVrZGVzY3JpcHRpb254PklkZW50aXR5IElEIHRvIGJlIHVzZWQgdG8gY3JlYXRlIHRoZSBwcmltYXJ5IG5hbWUgdGhlIElkZW50aXR5cGNvbnRlbnRNZWRpYVR5cGV4IWFwcGxpY2F0aW9uL3guZGFzaC5kcHAuaWRlbnRpZmllcm1tYXhQcm9wZXJ0aWVzAW1taW5Qcm9wZXJ0aWVzAXRhZGRpdGlvbmFsUHJvcGVydGllc/
→˓RscHJlb3JkZXJTYWx0pWR0eXBlZWFycmF5aG1heEl0ZW1zGCBobWluSXRlbXMYIGlieXRlQXJyYXn1a2Rlc2NyaXB0aW9ueCJTYWx0IHVzZWQgaW4gdGhlIHByZW9yZGVyIGRvY3VtZW50bnN1YmRvbWFpblJ1bGVzpWR0eXBlZm9iamVjdGhyZXF1aXJlZIFvYWxsb3dTdWJkb21haW5zanByb3BlcnRpZXOhb2FsbG93U3ViZG9tYWluc6NkdHlwZWdib29sZWFuaCRjb21tZW50eE9Pbmx5IHRoZSBkb21haW4gb3duZXIgaXMgYWxsb3dlZCB0byBjcmVhdGUgc3ViZG9tYWlucyBmb3Igbm9uIHRvcC1sZXZlbCBkb21haW5za2Rlc2NyaXB0aW9ueFtUaGlzIG9wdGlvbiBkZWZpbmVzIHdobyBjYW4gY3JlYXRlIHN1YmRvbWFpbnM6IHRydWUgLSBhbnlvbmU7IGZhbHNlIC0gb25seSB0aGUgZG9tYWluIG93bmVya2Rlc2NyaXB0aW9ueEJTdWJkb21haW4gcnVsZXMgYWxsb3cgZG9tYWluIG93bmVycyB0byBkZWZpbmUgcnVsZXMgZm9yIHN1YmRvbWFpbnN0YWRkaXRpb25hbFByb3BlcnRpZXP0b25vcm1hbGl6ZWRMYWJlbKVkdHlwZWZzdHJpbmdncGF0dGVybnghXlthLXowLTldW2EtejAtOS1dezAsNjF9W2EtejAtOV0kaCRjb21tZW50eGlNdXN0IGJlIGVxdWFsIHRvIHRoZSBsYWJlbCBpbiBsb3dlcmNhc2UuIFRoaXMgcHJvcGVydHkgd2lsbCBiZSBkZXByZWNhdGVkIGR1ZSB0byBjYXNlIGluc2Vuc2l0aXZlIGluZGljZXNpbWF4TGVuZ3RoGD9rZGVzY3JpcHRpb254UERvbWFpbiBsYWJlbCBpbiBsb3dlcmNhc2UgZm9yIGNhc2UtaW5zZW5zaXRpdmUgdW5pcXVlbmVzcyB2YWxpZGF0aW9uLiBlLmcuICdib2IneBpub3JtYWxpemVkUGFyZW50RG9tYWluTmFtZaZkdHlwZWZzdHJpbmdncGF0dGVybngmXiR8XlthLXowLTldW2EtejAtOS1cLl17MCw2MX1bYS16MC05XSRoJGNvbW1lbnR4jE11c3QgZWl0aGVyIGJlIGVxdWFsIHRvIGFuIGV4aXN0aW5nIGRvbWFpbiBvciBlbXB0eSB0byBjcmVhdGUgYSB0b3AgbGV2ZWwgZG9tYWluLiBPbmx5IHRoZSBkYXRhIGNvbnRyYWN0IG93bmVyIGNhbiBjcmVhdGUgdG9wIGxldmVsIGRvbWFpbnMuaW1heExlbmd0aBg/
→˓aW1pbkxlbmd0aABrZGVzY3JpcHRpb254XkEgZnVsbCBwYXJlbnQgZG9tYWluIG5hbWUgaW4gbG93ZXJjYXNlIGZvciBjYXNlLWluc2Vuc2l0aXZlIHVuaXF1ZW5lc3MgdmFsaWRhdGlvbi4gZS5nLiAnZGFzaCd0YWRkaXRpb25hbFByb3BlcnRpZXP0aHByZW9yZGVypmR0eXBlZm9iamVjdGdpbmRpY2VzgaNkbmFtZWpzYWx0ZWRIYXNoZnVuaXF1ZfVqcHJvcGVydGllc4GhcHNhbHRlZERvbWFpbkhhc2hjYXNjaCRjb21tZW50eEpQcmVvcmRlciBkb2N1bWVudHMgYXJlIGltbXV0YWJsZTogbW9kaWZpY2F0aW9uIGFuZCBkZWxldGlvbiBhcmUgcmVzdHJpY3RlZGhyZXF1aXJlZIFwc2FsdGVkRG9tYWluSGFzaGpwcm9wZXJ0aWVzoXBzYWx0ZWREb21haW5IYXNopWR0eXBlZWFycmF5aG1heEl0ZW1zGCBobWluSXRlbXMYIGlieXRlQXJyYXn1a2Rlc2NyaXB0aW9ueFlEb3VibGUgc2hhLTI1NiBvZiB0aGUgY29uY2F0ZW5hdGlvbiBvZiBhIDMyIGJ5dGUgcmFuZG9tIHNhbHQgYW5kIGEgbm9ybWFsaXplZCBkb21haW4gbmFtZXRhZGRpdGlvbmFsUHJvcGVydGllc/
→˓Q=",
"metadata": {
"height": "4253",
"coreChainLockedHeight": 889435,

(continues on next page)

1.26. DAPI Endpoints 115

Dash Platform, Release latest

(continued from previous page)

"timeMs": "1684440772828",
"protocolVersion": 1

}
}

getDocuments

Returns: Document information for the requested document(s)
Parameters:

- Parameter constraints

The where, order_by, limit, start_at, and start_after parameters must comply with the limits
defined on the Query Syntax page.

Additionally, note that where and order_by must be CBOR encoded.

Name Type Re-
quired

Description

data_contract_idBytes Yes A data contract id
document_type String Yes A document type defined by the data contract (e.g. preorder or domain

for the DPNS contract)
where * Bytes No Where clause to filter the results (must be CBOR encoded)
order_by * Bytes No Sort records by the field(s) provided (must be CBOR encoded)
limit Inte-

ger
No Maximum number of results to return

———-

One of the fol-
lowing:
start_at Inte-

ger
No Return records beginning with the index provided

start_after Inte-
ger

No Return records beginning after the index provided

———-

prove Boolean No Set to true to receive a proof that contains the requested document(s)

Note: When requesting proofs, the data requested will be encoded as part of the proof in the response.

** Example Request and Response **

116 Chapter 1. Platform docs

https://tools.ietf.org/html/rfc7049

Dash Platform, Release latest

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');
const Identifier = require('@dashevo/dpp/lib/Identifier');
const cbor = require('cbor');
const varint = require('varint');

const client = new DAPIClient();

const contractId = Identifier.from('GWRSAVFMjXx8HpQFaNJMqBV7MBgMK4br5UESsB4S31Ec');
client.platform.getDocuments(contractId, 'domain', { limit: 10 }).then((response) => {
for (const rawData of response.documents) {
// Strip off protocol version (leading varint) and decode
const documentBuffer = Buffer.from(rawData);
const protocolVersion = varint.decode(documentBuffer);
const document = cbor.decode(
documentBuffer.slice(varint.encodingLength(protocolVersion), documentBuffer.

→˓length),
);
console.log(document);

}
});

JAVASCRIPT

// JavaScript (dapi-grpc)
const {

v0: { PlatformPromiseClient, GetDocumentsRequest },
} = require('@dashevo/dapi-grpc');
const cbor = require('cbor');
const Identifier = require('@dashevo/dpp/lib/Identifier');
const varint = require('varint');

const platformPromiseClient = new PlatformPromiseClient(
'https://seed-1.testnet.networks.dash.org:1443',

);

const contractId = Identifier.from('GWRSAVFMjXx8HpQFaNJMqBV7MBgMK4br5UESsB4S31Ec');
const contractIdBuffer = Buffer.from(contractId);
const getDocumentsRequest = new GetDocumentsRequest();
const type = 'domain';
const limit = 10;

getDocumentsRequest.setDataContractId(contractIdBuffer);
getDocumentsRequest.setDocumentType(type);
// getDocumentsRequest.setWhere(whereSerialized);
// getDocumentsRequest.setOrderBy(orderBySerialized);
getDocumentsRequest.setLimit(limit);
// getDocumentsRequest.setStartAfter(startAfter);
// getDocumentsRequest.setStartAt(startAt);

(continues on next page)

1.26. DAPI Endpoints 117

Dash Platform, Release latest

(continued from previous page)

platformPromiseClient.getDocuments(getDocumentsRequest)
.then((response) => {
for (const document of response.getDocumentsList()) {
// Strip off protocol version (leading varint) and decode
const documentBuffer = Buffer.from(document);
const protocolVersion = varint.decode(documentBuffer);
const decodedDocument = cbor.decode(

documentBuffer.slice(varint.encodingLength(protocolVersion), documentBuffer.
→˓length),

);
console.log(decodedDocument);

}
})
.catch((e) => console.error(e));

SHELL

gRPCurl
Request documents
`id` must be represented in base64
grpcurl -proto protos/platform/v0/platform.proto \
-d '{
"data_contract_id":"5mjGWa9mruHnLBht3ntbfgodcSoJxA1XIfYiv1PFMVU=",
"document_type":"domain",
"limit":1
}' \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Platform/getDocuments

JSON

// Response (JavaScript)
{
"$id": "<Buffer 01 a0 7c 69 43 82 cf fe 93 97 be c9 f4 be cd 67 81 8f 60 d2 a7 56 48␣

→˓08 11 80 49 84 0b 2e 2c 5d>",
"$type": "domain",
"label": "Dash01",
"records": {
"dashUniqueIdentityId": "<Buffer f5 50 ed 37 1a 12 3f 54 00 59 31 84 f7 f7 37 f1 f4␣

→˓b1 5d 05 6f 9c a8 0e 5f 00 52 82 08 77 7c 4a>"
},
"$ownerId": "<Buffer f5 50 ed 37 1a 12 3f 54 00 59 31 84 f7 f7 37 f1 f4 b1 5d 05 6f 9c␣

→˓a8 0e 5f 00 52 82 08 77 7c 4a>",
"$revision": 1,
"preorderSalt": "<Buffer 2c b4 1b e9 f4 40 03 9b 47 2f 31 74 46 df 7f 4f 43 fe 14 80␣

→˓be ca 84 0d 63 0f a6 65 23 b9 9c a1>",
"subdomainRules": { "allowSubdomains": false },
"$dataContractId": "<Buffer e6 68 c6 59 af 66 ae e1 e7 2c 18 6d de 7b 5b 7e 0a 1d 71␣

(continues on next page)

118 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

→˓2a 09 c4 0d 57 21 f6 22 bf 53 c5 31 55>",
"normalizedLabel": "dash01",
"normalizedParentDomainName": "dash"

}

JSON

// Response (gRPCurl)
{
"documents": [

→˓"AatjJGlkWCACod79ik2tILNnybx5VepoaX2cceXDSogwSgxdWi9zYmUkdHlwZWZkb21haW5lbGFiZWx0Yzg4OWMyM2FiY2ZkYzU3NGNmZWJncmVjb3Jkc6FzZGFzaEFsaWFzSWRlbnRpdHlJZFggMBLBm5jsADOt2zbNZLf1EGcPKjUaQwS19plBRChu/
→˓axoJG93bmVySWRYIDASwZuY7AAzrds2zWS39RBnDyo1GkMEtfaZQUQobv2saSRyZXZpc2lvbgFscHJlb3JkZXJTYWx0WCAkJyav6iQVX7hFrUFagKC+xddHsyA5Wo/
→˓NdvejXt6aSG5zdWJkb21haW5SdWxlc6FvYWxsb3dTdWJkb21haW5z9W8kZGF0YUNvbnRyYWN0SWRYIOZoxlmvZq7h5ywYbd57W34KHXEqCcQNVyH2Ir9TxTFVb25vcm1hbGl6ZWRMYWJlbHRjODg5YzIzYWJjZmRjNTc0Y2ZlYngabm9ybWFsaXplZFBhcmVudERvbWFpbk5hbWVg
→˓"
],
"metadata": {
"height": "4254",
"coreChainLockedHeight": 889435,
"timeMs": "1684440970270",
"protocolVersion": 1

}
}

waitForStateTransitionResult

Returns: The state transition hash and either a proof that the state transition was confirmed in a block or an error.
Parameters:

Name Type Required Description
state_transition_hash Bytes Yes Hash of the state transition
prove Boolean Yes Set to true to request a proof

Note: When requesting proofs, the data requested will be encoded as part of the proof in the response.

** Example Request**

JAVASCRIPT

// JavaScript (dapi-client)
const DAPIClient = require('@dashevo/dapi-client');

const client = new DAPIClient();

// Replace <YOUR_STATE_TRANSITION_HASH> with your actual hash
const hash = <YOUR_STATE_TRANSITION_HASH>;
client.platform.waitForStateTransitionResult(hash, { prove: true })

(continues on next page)

1.26. DAPI Endpoints 119

Dash Platform, Release latest

(continued from previous page)

.then((response) => {
console.log(response);

});

SHELL

gRPCurl
Replace `your_state_transition_hash` with your own before running
`your_state_transition_hash` must be represented in base64
Example: wEiwFu9WvAtylrwTph5v0uXQm743N+75C+C9DhmZBkw=
grpcurl -proto protos/platform/v0/platform.proto \
-d '{

"state_transition_hash":your_state_transition_hash,
"prove": "true"
}' \

seed-1.testnet.networks.dash.org:1443 \
org.dash.platform.dapi.v0.Platform/waitForStateTransitionResult

Deprecated Endpoints

No endpoints were deprecated in Dash Platform v0.24, but the previous version of documentation can be viewed here.

Code Reference

Implementation details related to the information on this page can be found in:

• The Platform repository packages/dapi/lib/grpcServer/handlers/core folder

• The Platform repository packages/dapi-grpc/protos folder

1.27 Query Syntax

1.27.1 Overview

Generally queries will consist of a where clause plus optional modifiers controlling the specific subset of results re-
turned.

Query limitations

Dash Platform v0.22 introduced a number of limitations due to the switch to using GroveDB. See details
in pull requests 77 and 230 that implemented these changes.

Query validation details may be found here along with the associated validation tests.

120 Chapter 1. Platform docs

https://dashplatform.readme.io/v0.23.0/docs/reference-dapi-endpoints-platform-endpoints
https://github.com/dashevo/platform/tree/master/packages/dapi
https://github.com/dashevo/platform/tree/master/packages/dapi-grpc
https://github.com/dashevo/grovedb
https://github.com/dashevo/platform/pull/77
https://github.com/dashevo/platform/pull/230
https://github.com/dashevo/platform/blob/master/packages/js-drive/lib/document/query/validateQueryFactory.js
https://github.com/dashevo/platform/blob/master/packages/js-drive/test/unit/document/query/validateQueryFactory.spec.js

Dash Platform, Release latest

1.27.2 Where Clause

The Where clause must be a non-empty array containing not more than 10 conditions. For some operators, value will
be an array. See the following general syntax example:

As of Dash Platform v0.22, all fields referenced in a query’s where clause must be defined in the same
index. This includes $createdAt and $updatedAt.

{
where: [
[<fieldName>, <operator>, <value>],
[<fieldName>, <array operator>, [<value1>, <value2>]]

]
}

Fields

Valid fields consist of the indices defined for the document being queried. For example, the DPNS data contract defines
three indices:

Index Field(s) Index Type Unique
normalizedParentDomainName, normalizedLabel Compound Yes
records.dashUniqueIdentityId Single Field Yes
records.dashAliasIdentityId Single Field No

Comparison Operators

Equal

Name Description
== Matches values that are equal to a specified value

Range

Dash Platform v0.22 notes

• Only one range operator is allowed in a query (except for between behavior)

• The in operator is only allowed for last two indexed properties

• Range operators are only allowed after == and in operators

• Range operators are only allowed for the last two fields used in the where condition

• Queries using range operators must also include an orderBy statement

1.27. Query Syntax 121

https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json
https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json#L5-L16
https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json#L17-L25
https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json#L26-L33

Dash Platform, Release latest

Name Description
< Matches values that are less than a specified value
<= Matches values that are less than or equal to a specified value
>= Matches values that are greater than or equal to a specified value
> Matches values that are greater than a specified value
in Matches all document(s) where the value of the field equals any value in the specified array Array may

include up to 100 (unique) elements

Array Operators

Name Description
length Not available in Dash Platform v0.22Selects documents if the array field is a specified size (integer)
con-
tains

Not available in Dash Platform v0.22- Matches arrays that contain all elements specified in the query
condition array - 100 element maximum

ele-
ment-
Match

Not available in Dash Platform v0.22- Matches documents that contain an array field with at least one
element that matches all the criteria in the query condition array - Two or more conditions must be provided

Evaluation Operators

Name Description
startsWithSelects documents where the value of a field begins with the specified characters (string, <= 255 charac-

ters). Must include an orderBy statement.

Operator Examples

{
where: [
['nameHash', '<', '56116861626961756e6176657a382e64617368'],

],
}

{
where: [

['normalizedParentDomainName', '==', 'dash'],
// Return all matching names from the provided array
['normalizedLabel', 'in', ['alice', 'bob']],

]
}

{
where: [

['normalizedParentDomainName', '==', 'dash'],
// Return any names beginning with "al" (e.g. alice, alfred)
['normalizedLabel', 'startsWith', 'al'],

]
}

122 Chapter 1. Platform docs

Dash Platform, Release latest

// Not available in Dash Platform v0.22
// See https://github.com/dashevo/platform/pull/77
{
where: [

// Return documents that have 5 values in their `items` array
['items', 'length', 5],

]
}

// Not available in Dash Platform v0.22
// See https://github.com/dashevo/platform/pull/77
{
where: [

// Return documents that have both "red" and "blue"
// in the `colors` array
['colors', 'contains', ['red', 'blue']],

]
}

// Not available in Dash Platform v0.22
// See https://github.com/dashevo/platform/pull/77
{
where: [
// Return `scores` documents where the results contain
// elements in the range 80-90
['scores', 'elementMatch',
[
['results', '>=', '80'],
['results', '<=', '90']

],
],

]
}

1.27.3 Query Modifiers

The query modifiers described here determine how query results will be sorted and what subset of data matching the
query will be returned.

Breaking changes

Starting with Dash Platform v0.22, startAt and startAfter must be provided with a document ID
rather than an integer.

1.27. Query Syntax 123

Dash Platform, Release latest

Mod-
ifier

Effect Example

limit Restricts the number of results returned (maximum: 100) limit: 10
orderByReturns records sorted by the field(s) provided (maximum: 2). Sorting

must be by the last indexed property. Can only be used with >, <, >=, <=,
and startsWith queries.

orderBy:
[['normalizedLabel',
'asc']]

startAtReturns records beginning with the document ID provided startAt: Buffer.
from(Identifier.
from(<document ID>))

startAfterReturns records beginning after the document ID provided startAfter: Buffer.
from(Identifier.
from(<document ID>))

Compound Index Constraints

For indices composed of multiple fields (example from the DPNS data contract), the sort order in an
orderBy must either match the order defined in the data contract OR be the inverse order.

Please refer to pull request 230 for additional information related to compound index constraints in Platform
v0.22.

1.27.4 Example query

The following query combines both a where clause and query modifiers.

import Dash from "dash"

const { Essentials: { Buffer }, PlatformProtocol: { Identifier } } = Dash;

const query = {
limit: 5,
startAt: Buffer.from(Identifier.from('4Qp3menV9QjE92hc3BzkUCusAmHLxh1AU6gsVsPF4L2q')),
where: [
['normalizedParentDomainName', '==', 'dash'],
['normalizedLabel', 'startsWith', 'test'],

],
orderBy: [
['normalizedLabel', 'asc'],

],
}

1.28 Data Contracts

1.28.1 Overview

Data contracts define the schema (structure) of data an application will store on Dash Platform. Contracts are described
using JSON Schema which allows the platform to validate the contract-related data submitted to it.

The following sections provide details that developers need to construct valid contracts: documents and definitions. All
data contracts must define one or more documents, whereas definitions are optional and may not be used for simple
contracts.

124 Chapter 1. Platform docs

https://github.com/dashevo/platform/blob/master/packages/dpns-contract/schema/dpns-contract-documents.json
https://github.com/dashevo/platform/pull/230
https://json-schema.org/understanding-json-schema/

Dash Platform, Release latest

1.28.2 Documents

The documents object defines each type of document required by the data contract. At a minimum, a document
must consist of 1 or more properties. Documents may also define indices and a list of required properties. The
additionalProperties properties keyword must be included as described in the constraints section.

The following example shows a minimal documents object defining a single document (note) that has one property
(message).

{
"note": {
"properties": {
"message": {
"type": "string"

}
},
"additionalProperties": false

}
}

Document Properties

The properties object defines each field that will be used by a document. Each field consists of an object that, at a
minimum, must define its data type (string, number, integer, boolean, array, object).

Fields may also apply a variety of optional JSON Schema constraints related to the format, range, length, etc. of
the data. A full explanation of the capabilities of JSON Schema is beyond the scope of this document. For more
information regarding its data types and the constraints that can be applied, please refer to the JSON Schema reference
documentation.

Special requirements for object properties

The object type is required to have properties defined either directly or via the data contract’s $defs. For example, the
body property shown below is an object containing a single string property (objectProperty):

const contractDocuments = {
message: {
type: "object",
properties: {
body: {
type: "object",
properties: {

objectProperty: {
type: "string"

},
},
additionalProperties: false,

},
header: {
type: "string"

}
},

(continues on next page)

1.28. Data Contracts 125

https://json-schema.org/understanding-json-schema/reference/index.html

Dash Platform, Release latest

(continued from previous page)

additionalProperties: false
}

};

Property Constraints

There are a variety of constraints currently defined for performance and security reasons.

Description Value
Minimum number of properties 1
Maximum number of properties 100
Minimum property name length 1 (Note: minimum length was 3 prior to v0.23)
Maximum property name length 64
Property name characters Alphanumeric (A-Z, a-z, 0-9)Hyphen (-) Underscore (_)

Prior to Dash Platform v0.23 there were stricter limitations on minimum property name length and the characters that
could be used in property names.

Required Properties (Optional)

Each document may have some fields that are required for the document to be valid and other fields that are optional.
Required fields are defined via the required array which consists of a list of the field names from the document that
must be present. The required object should be excluded for documents without any required properties.

"required": [
"<field name a>",
"<field name b>"

]

Example
The following example (excerpt from the DPNS contract’s domain document) demonstrates a document that has 6
required fields:

"required": [
"nameHash",
"label",
"normalizedLabel",
"normalizedParentDomainName",
"preorderSalt",
"records"

],

126 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L22
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L23
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L20
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L20

Dash Platform, Release latest

Document Indices

Document indices may be defined if indexing on document fields is required. The indices object should be excluded
for documents that do not require indices.

The indices array consists of:

• One or more objects that each contain:

– A unique name for the index

– A properties array composed of a <field name: sort order> object for each document field that
is part of the index (sort order: asc only for Dash Platform v0.23)

– An (optional) unique element that determines if duplicate values are allowed for the document

Compound Indices

When defining an index with multiple properties (i.e a compound index), the order in which the properties
are listed is important. Refer to the mongoDB documentation for details regarding the significance of the
order as it relates to querying capabilities. Dash uses GroveDB which works similarly but does requiring
listing all the index’s fields in query order by statements.

"indices": [
{
"properties": [
{ "<field name a>": "<asc"|"desc>" },
{ "<field name b>": "<asc"|"desc>" }

],
"unique": true|false

},
{
"properties": [
{ "<field name c>": "<asc"|"desc>" },

],
}

]

Index Constraints

For performance and security reasons, indices have the following constraints. These constraints are subject to change
over time.

Description Value
Minimum/maximum length of index name 1 / 32
Maximum number of indices 10
Maximum number of unique indices 3
Maximum number of properties in a single index 10
Maximum length of indexed string property 63
Note: Dash Platform v0.22+. does not allow indices for arraysMaximum length of indexed byte array
property

255

Note: Dash Platform v0.22+. does not allow indices for arraysMaximum number of indexed array items 1024
Usage of $id in an index disallowed N/A

Example

1.28. Data Contracts 127

https://github.com/dashevo/platform/pull/435
https://docs.mongodb.com/manual/core/index-compound/#prefixes
https://github.com/dashevo/grovedb
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L413
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L414
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L446
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L40
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L433
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L39
https://github.com/dashpay/platform/pull/225
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L43
https://github.com/dashpay/platform/pull/225
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L44
https://github.com/dashpay/platform/pull/178

Dash Platform, Release latest

The following example (excerpt from the DPNS contract’s preorder document) creates an index on
saltedDomainHash that also enforces uniqueness across all documents of that type:

"indices": [
{
"properties": [

{ "saltedDomainHash": "asc" }
],
"unique": true

}
],

Full Document Syntax

This example syntax shows the structure of a documents object that defines two documents, an index, and a required
field.

{
"<document name a>": {
"type": "object",
"properties": {
"<field name b>": {
"type": "<field data type>"

},
"<field name c>": {
"type": "<field data type>"

},
},
"indices": [
{
"name": "<index name>",
"properties": [
{
"<field name c>": "asc"

}
],
"unique": true|false

},
],
"required": [
"<field name c>"

]
"additionalProperties": false

},
"<document name x>": {
"type": "object",
"properties": {
"<property name y>": {
"type": "<property data type>"

},
"<property name z>": {
"type": "<property data type>"

(continues on next page)

128 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

},
},
"additionalProperties": false

},
}

1.28.3 Definitions

Definitions are currently unavailable

The optional $defs object enables definition of aspects of a schema that are used in multiple places. This is done using
the JSON Schema support for reuse.

Items defined in $defsmay then be referenced when defining documents through use of the $ref keyword. Properties
defined in the $defs object must meet the same criteria as those defined in the documents object. Data contracts can
only use the $ref keyword to reference their own $defs. Referencing external definitions is not supported by the
platform protocol.

Example
The following example shows a definition for a message object consisting of two properties:

{
// Preceeding content truncated ...
"$defs": {
"message": {
"type": "object",
"properties": {
"timestamp": {
"type": "number"

},
"description": {
"type": "string"

}
},
"additionalProperties": false

}
}

}

General Constraints

There are a variety of constraints currently defined for performance and security reasons. The following constraints
are applicable to all aspects of data contracts. Unless otherwise noted, these constraints are defined in the platform’s
JSON Schema rules (e.g. rs-dpp data contract meta schema).

1.28. Data Contracts 129

https://json-schema.org/understanding-json-schema/structuring.html#reuse
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json

Dash Platform, Release latest

Keyword

The $ref keyword has been disabled since Platform v0.22.

Keyword Constraint
default Restricted - cannot be used (defined in DPP logic)
propertyNames Restricted - cannot be used (defined in DPP logic)
uniqueItems: true maxItems must be defined (maximum: 100000)
pattern: <something> maxLength must be defined (maximum: 50000)
format: <something> maxLength must be defined (maximum: 50000)
$ref: <something> Temporarily disabled$ref can only reference $defs - remote references

not supported
if, then, else, allOf, anyOf,
oneOf, not

Disabled for data contracts

dependencies Not supported. Use dependentRequired and dependentSchema instead
additionalItems Not supported. Use items: false and prefixItems instead
patternProperties Restricted - cannot be used for data contracts
pattern Accept only RE2 compatible regular expressions (defined in DPP logic)

Data Size

Note: These constraints are defined in the Dash Platform Protocol logic (not in JSON Schema).

All serialized data (including state transitions) is limited to a maximum size of 16 KB.

Additional Properties

Although JSON Schema allows additional, undefined properties by default, they are not allowed in Dash Platform data
contracts. Data contract validation will fail if they are not explicitly forbidden using the additionalProperties
keyword anywhere properties are defined (including within document properties of type object).

Include the following at the same level as the properties keyword to ensure proper validation:

"additionalProperties": false

1.29 Glossary

1.29.1 Application

The combination of Application Identity, Data Contract, and Application State that together represent a Dash Platform
Application

130 Chapter 1. Platform docs

https://github.com/dashevo/platform/pull/300
https://github.com/google/re2/wiki/Syntax
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/util/serializer.rs#L8
https://json-schema.org/understanding-json-schema/reference/object.html?#properties

Dash Platform, Release latest

1.29.2 Application State

The collection of documents created by users during their use of an application

1.29.3 Block

One or more transactions prefaced by a block header and protected by proof of work. Blocks are the data stored on the
core blockchain

1.29.4 Block Reward

The amount that miners may claim as a reward for creating a block. Equal to the sum of the block subsidy (newly
available duffs) plus the transactions fees paid by transactions included in the block

1.29.5 ChainLock

Defined in DIP8, ChainLocks are a method of using an LLMQ to threshold sign a block immediately after it is prop-
agated by the miner in order to enforce the first-seen rule. This powerful method of mitigating 51% mining attacks
results in near-instant consensus on the valid chain.

1.29.6 Classical Transactions

Standard Dash transactions moving Dash on the core blockchain ledger

1.29.7 Coinbase Transaction

The first transaction in a block. Always created by a miner, it includes a single coinbase.

1.29.8 Core Chain

Layer 1 blockchain used for payments, governance, and providing the foundation for tier 2 masternode infrastructure
(LLMQs, DML, PoSe, etc.)

1.29.9 Credits

Means of paying fees on the layer 2 platform

1.29.10 DAPI

Dash’s decentralized API for interacting with the core blockchain (layer 1) and the platform (layer 2)

1.29. Glossary 131

https://github.com/dashpay/dips/blob/master/dip-0008.md

Dash Platform, Release latest

1.29.11 DAPI Client

An HTTP Client that connects to DAPI to enable users to read and write data to the Dash platform

1.29.12 DashPay

Dash Platform based wallet supporting payments via usernames

1.29.13 DashPay Contact Request

A platform document that defines a one way relationship between a sender and a recipient. It includes an encrypted
extended public key which will allow the sender to pay the recipient using addresses that other users have no knowledge
of. The sender creates and publishes this document. When two users have both sent contact requests to each other, then
each is considered a fully established contact with the other.

1.29.14 DashPay Contact Info

A platform document containing an identity’s set of private information related to other identities that are contacts.

1.29.15 DashPay Profile

A platform document containing a set of public information for an identity that includes a display name, a public
message (bio/status) and an avatar URL. The display name and avatar help complement the identity’s username from
DPNS to better visually identify an identity in a user interface. An identity can only have a single DashPay profile.

1.29.16 Dash Core

Layer 1 core blockchain reference client

1.29.17 Data Contract

The database schema a developer submits in order to start using Dash Platform as a back end for their application

1.29.18 Dash Platform Application

A client application that leverages Dash Platform services

1.29.19 Dash Platform Naming Service (DPNS)

A service used to register names on the Dash Platform. Can be extended to work in a DNS-like mode. Implemented
as an application on top of the platform that leverages platform capabilities

132 Chapter 1. Platform docs

Dash Platform, Release latest

1.29.20 Dash Platform Protocol (DPP)

Describes data structures and validation rules for the data structures used by the platform (e.g. Data Contract, Docu-
ment, and State Transition). Data structures are defined using JSON-Schema based format

1.29.21 Decentralized Autonomous Organization (DAO)

An organization where decision making is governed according to a set of rules that is transparent, controlled by orga-
nization members, and lacking any central authority. Financial records are tracked using a blockchain, which provides
the transparency and trust required by organization members.

1.29.22 Devnet

A development environment in which developers can obtain and spend Dash that has no real-world value on a network
that is very similar to the Dash mainnet. Multiple independent devnets can coexist without interference. Devnets can
be either public or private networks. See the Testing Applications page for a more detailed description of network
types.

1.29.23 Direct Settlement Payment Channel (DSPC)

In DashPay, established contacts have address spaces to send and receive from each other. When these are present
either in one way or bi-directional we will call this a direct settlement payment channel.

1.29.24 Distributed Key Generation (DKG)

Distributed key generation (DKG) is a cryptographic process in which multiple parties contribute to the calculation of a
shared public and private key set. In Dash, DKG is used to generate a BLS key pair for use in a long-living masternode
quorum (LLMQ) to perform threshold signing on network messages. Further detail can be found in DIP-6 Long-Living
Masternode Quorums.

1.29.25 Document

A data entry, similar to a document in a document-oriented database. Represented as a JSON. An atomic entity used
by the platform to store the user-submitted data

1.29.26 Drive

Layer 2 platform storage

1.29. Glossary 133

https://github.com/dashpay/dips/blob/master/dip-0006.md#llmq-dkg-network-protocol
https://github.com/dashpay/dips/blob/master/dip-0006.md#llmq-dkg-network-protocol

Dash Platform, Release latest

1.29.27 Layer (1, 2, 3)

• Layer 1: Core blockchain and Dash Core

• Layer2: Drive and DAPI

• Layer 3: DAPI clients

1.29.28 Local network

A configuration unique to dashmate that uses Dash Core’s regtest network type to create a multi-node network on a
single computer. This configuration allows developers to work independently on their own network for testing and
development.

1.29.29 Long Living Masternode Quorum (LLMQ)

Deterministic subset of the global deterministic masternode list used to perform threshold signing of consensus-related
messages

1.29.30 Mainnet

The original and main network for Dash transactions, where transaction have real economic value.

1.29.31 Masternode

2nd-tier collateralized Node in the Dash P2P network, performing additional functions and forming a provision layer

1.29.32 Platform Chain

Layer 2 blockchain that propagates platform data among masternodes, propagates platform blocks among masternodes,
applies Layer 2 consensus, authoritatively orders state transitions, and controls platform state consistency

1.29.33 Platform State

All layer 2 data including contracts, documents (user data), credit balance, identity (username)

1.29.34 practical Byzantine Fault Tolerance (pBFT)

A consensus algorithm designed to work efficiently in asynchronous environments while assuming the presence of
adversarial actors. Advantages of pBFT include energy efficiency, transaction finality, and low reward variance.

134 Chapter 1. Platform docs

https://www.npmjs.com/package/dashmate

Dash Platform, Release latest

1.29.35 Proof of Service (PoSe)

Ability to trustlessly prove that a masternode provided the required service to the network in order to earn a reward

1.29.36 Proof of Work (PoW)

Ability to trustlessly prove that a node completed a certain amount of work during the process of confirming a new
block to the blockchain.

1.29.37 Quorum

Group of masternodes signing some action, formation of the group determined by via some determination algorithm

1.29.38 Quorum Signature

BLS signature resulting from some agreement within a masternode quorum

1.29.39 Regtest

A local regression testing environment in which developers can almost instantly generate blocks on demand for testing
events, and can create private Dash with no real-world value. See the Testing Applications page for a more detailed
description of network types.

1.29.40 Simple Payment Verification

A method for verifying if transactions are part of a block without downloading the whole block. This is useful for
lightweight clients which don’t run continuously and which don’t have the storage space or bandwidth for a full copy
of the blockchain.

1.29.41 Special Transactions

Transactions containing an extra payload using the format defined by DIP-2

1.29.42 State Machine

The application that validates state transitions and updates state in Drive

1.29.43 State Transition

The change a user does to the application and platforms states. Consists of an array of documents or one data contract,
the id of the application to which the change is made, and a user signature

1.29. Glossary 135

https://github.com/dashpay/dips/blob/master/dip-0002.md

Dash Platform, Release latest

1.29.44 Tenderdash

Dash fork of Tendermint modified for use in Dash Platform. See Platform Consensus for more information.

1.29.45 Testnet

A global testing environment in which developers can obtain and spend Dash that has no real-world value on a network
that is very similar to the Dash mainnet. See the Testing Applications page for a more detailed description of network
types.

See: Intro to Testnet for more information

1.29.46 Validator Set

The group of masternodes responsible for the layer 2 blockchain (platform chain) consensus at a given time. They vote
on the content of each platform chain block and are analogous to miners on the layer 1’s core blockchain

1.30 Frequently Asked Questions

1.30.1 What is Evolution?

“Evolution” is a codename used to reference various products. It includes “Dash Platform,” a FireBase-like platform
for developing backends for websites and applications, hosted on the masternode network.

Also, the term ” Evolution” refers to several other products that we are going to develop on top of the platform. An
example of such an app is DashPay - an easy to use payment solution with usernames and contact lists.

1.30.2 How does a DAPI client discover the IP address of masternodes hosting DAPI
endpoints?

The DNS seed will provide a deterministic masternode list (DML) to the client. More on the deterministic MN list can
be found here:

• DML spec: https://github.com/dashpay/dips/blob/master/dip-0003.md

• DML verification: https://github.com/dashpay/dips/blob/master/dip-0004.md

1.30.3 Why can’t I connect to DAPI from a page served over HTTPS?

Modern browsers block connections to insecure content when the main page is loaded securely. At the moment, there
are technical obstacles to serving DAPI content over HTTPS. Until then, the only way to test DAPI from a web page is
to serve the web page insecurely. Dash Core team is evaluating different ways to work around this browser restriction
and have a trustworthy connection to DAPI.

136 Chapter 1. Platform docs

https://tendermint.com/core

Dash Platform, Release latest

1.30.4 Will it be possible to use apps with only an identity, or will a DPNS name have
to be registered first?

Apps can interact with an identity whether or not it has a DPNS name registered. Someone may create an app that
requires one, but it’s not a platform restriction.

1.30.5 Should it be possible to create multiple identities using a single private key?

It may not be a very good practice, but this is not restricted.

1.30.6 Will DAPI RPCs always be free? How will DoS attacks be mitigated?

Right now there’s only IP based rate limits. Generally Core team wants platform data to be available for everyone, so
there are no plans today to have paid queries.

1.30.7 When I try to load the Dash javascript library, why is there is a syntax error
“Invalid regular expression”?

This can be caused by loading the script with the wrong character encoding. The dash npm package uses UTF-8
encoding. Try this: <script src="https://unpkg.com/dash" encoding="UTF-8"></script>

1.31 Overview

1.31.1 Introduction

The Dash Platform Protocol (DPP) defines a protocol for the data objects (e.g. identities, data contracts, documents,
state transitions) that can be stored on Dash’s layer 2 platform. All data stored on Dash Platform is governed by DPP
to ensure data consistency and integrity is maintained.

Dash Platform data objects consist of JSON and are validated using the JSON Schema specification via pre-defined
JSON Schemas and meta-schemas described in these sections. The meta-schemas allow for creation of DPP-compliant
schemas which define fields for third-party Dash Platform applications.

In addition to ensuring data complies with predefined JSON Schemas, DPP also defines rules for hashing and serial-
ization of these objects.

1.31.2 Reference Implementation

The current reference implementation is the (Rust) rs-dpp library. The schemas and meta-schemas referred to in this
specification can be found here in the reference implementation: https://github.com/dashpay/platform/tree/master/
packages/rs-dpp/src/schema.

1.31. Overview 137

https://github.com/dashevo/platform/tree/master/packages/rs-dpp
https://github.com/dashpay/platform/tree/master/packages/rs-dpp/src/schema
https://github.com/dashpay/platform/tree/master/packages/rs-dpp/src/schema

Dash Platform, Release latest

1.31.3 Release Notes

Release notes for past versions are located on the dashpay/platform GitHub release page. They provide information
about breaking changes, features, and fixes.

1.31.4 Topics

Identities

• Create

• TopUp

Data Contracts

• Documents

– Properties

– Indices

• Definitions

Document

State Transitions

• Overview / general structure

• Types

– Identity Create ST

– Data Contract ST

– Document Batch ST

∗ Document Transitions

· Document Transition Base

· Document Create Transition

· Document Replace Transition

· Document Delete Transition

• Signing

Data Triggers

1.32 Identity

1.32.1 Identity Overview

Identities are a low-level construct that provide the foundation for user-facing functionality on the platform. An identity
is a public key (or set of public keys) recorded on the platform chain that can be used to prove ownership of data. Please
see the Identity DIP for additional information.

Identities consist of three components that are described in further detail in the following sections:

138 Chapter 1. Platform docs

https://github.com/dashpay/platform/releases
https://github.com/dashpay/dips/blob/master/dip-0011.md

Dash Platform, Release latest

Field Type Description
protocolVersion integer The protocol version
id array of bytes The identity id (32 bytes)
publicKeys array of keys Public key(s) associated with the identity
balance integer Credit balance associated with the identity
revision integer Identity update revision

Each identity must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"id": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"publicKeys": {
"type": "array",
"minItems": 1,
"maxItems": 32,
"uniqueItems": true

},
"balance": {
"type": "integer",
"minimum": 0

},
"revision": {
"type": "integer",
"minimum": 0,
"description": "Identity update revision"

}
},
"required": [
"protocolVersion",
"id",
"publicKeys",
"balance",
"revision"

]
}

Example Identity

{
"protocolVersion":1,

(continues on next page)

1.32. Identity 139

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/identity.json

Dash Platform, Release latest

(continued from previous page)

"id":"6YfP6tT9AK8HPVXMK7CQrhpc8VMg7frjEnXinSPvUmZC",
"publicKeys":[
{
"id":0,
"type":0,
"purpose":0,
"securityLevel":0,
"data":"AkWRfl3DJiyyy6YPUDQnNx5KERRnR8CoTiFUvfdaYSDS",
"readOnly":false

}
],
"balance":0,
"revision":0

}

Identity id

The identity id is calculated by Base58 encoding the double sha256 hash of the outpoint used to fund the identity
creation.

id = base58(sha256(sha256(<identity create funding output>)))

Note: The identity id uses the Dash Platform specific application/x.dash.dpp.identifier content media type.
For additional information, please refer to the js-dpp PR 252 that introduced it and identifier.rs.

Identity publicKeys

The identity publicKeys array stores information regarding each public key associated with the identity. Multiple
identities may use the same public key.

Note: Since v0.23, each identity must have at least two public keys: a primary key (security level 0) that is only used
when updating the identity and an additional one (security level 2) used to sign state transitions.

Each item in the publicKeys array consists of an object containing:

Field Type Description
id integer The key id (all public keys must be unique)
type integer Type of key (default: 0 - ECDSA)
data array of

bytes
Public key (0 - ECDSA: 33 bytes, 1 - BLS: 48 bytes, 2 - ECDSA Hash160: 20 bytes, 3 -
BIP13 Hash160: 20 bytes)

purpose integer Public key purpose (0 - Authentication, 1 - Encryption, 2 - Decryption, 3 - Withdraw)
secu-
rityLevel

integer Public key security level (0 - Master, 1 - Critical, 2 - High, 3 - Medium)

readonly boolean Identity public key can’t be modified with readOnly set to true. This can’t be changed
after adding a key.

disable-
dAt

integer Timestamp indicating that the key was disabled at a specified time

Keys for some purposes must meet certain security level criteria as detailed below:

140 Chapter 1. Platform docs

https://docs.dash.org/projects/core/en/stable/docs/resources/glossary.html#outpoint
https://github.com/dashevo/js-dpp/pull/252
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-platform-value/src/types/identifier.rs
https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/identity/identity_public_key/security_level.rs#L62-L77

Dash Platform, Release latest

Key Purpose Allowed Security Level(s)
Authentication Any security level
Encryption Medium
Decryption Medium
Withdraw Critical

Each identity public key must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"id": {
"type": "integer",
"minimum": 0,
"description": "Public key ID",
"$comment": "Must be unique for the identity. It can’t be changed after adding a␣

→˓key. Included when signing state transitions to indicate which identity key was used␣
→˓to sign."

},
"type": {
"type": "integer",
"enum": [

0,
1,
2,
3

],
"description": "Public key type. 0 - ECDSA Secp256k1, 1 - BLS 12-381, 2 - ECDSA␣

→˓Secp256k1 Hash160, 3 - BIP 13 Hash160",
"$comment": "It can't be changed after adding a key"

},
"purpose": {
"type": "integer",
"enum": [

0,
1,
2,
3

],
"description": "Public key purpose. 0 - Authentication, 1 - Encryption, 2 -␣

→˓Decryption, 3 - Withdraw",
"$comment": "It can't be changed after adding a key"

},
"securityLevel": {
"type": "integer",
"enum": [

0,
1,
2,
3

],
(continues on next page)

1.32. Identity 141

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/publicKey.json

Dash Platform, Release latest

(continued from previous page)

"description": "Public key security level. 0 - Master, 1 - Critical, 2 - High, 3 -␣
→˓Medium",

"$comment": "It can't be changed after adding a key"
},
"data": true,
"readOnly": {
"type": "boolean",
"description": "Read only",
"$comment": "Identity public key can't be modified with readOnly set to true. It␣

→˓can’t be changed after adding a key"
},
"disabledAt": {
"type": "integer",
"description": "Timestamp indicating that the key was disabled at a specified time

→˓",
"minimum": 0

}
},
"allOf": [
{
"if": {
"properties": {
"type": {
"const": 0

}
}

},
"then": {
"properties": {
"data": {
"type": "array",
"byteArray": true,
"minItems": 33,
"maxItems": 33,
"description": "Raw ECDSA public key",
"$comment": "It must be a valid key of the specified type and unique for the␣

→˓identity. It can’t be changed after adding a key"
}

}
}

},
{
"if": {
"properties": {
"type": {
"const": 1

}
}

},
"then": {
"properties": {
"data": {

(continues on next page)

142 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

"type": "array",
"byteArray": true,
"minItems": 48,
"maxItems": 48,
"description": "Raw BLS public key",
"$comment": "It must be a valid key of the specified type and unique for the␣

→˓identity. It can’t be changed after adding a key"
}

}
}

},
{
"if": {
"properties": {
"type": {
"const": 2

}
}

},
"then": {
"properties": {
"data": {
"type": "array",
"byteArray": true,
"minItems": 20,
"maxItems": 20,
"description": "ECDSA Secp256k1 public key Hash160",
"$comment": "It must be a valid key hash of the specified type and unique␣

→˓for the identity. It can’t be changed after adding a key"
}

}
}

},
{
"if": {
"properties": {
"type": {
"const": 3

}
}

},
"then": {
"properties": {
"data": {
"type": "array",
"byteArray": true,
"minItems": 20,
"maxItems": 20,
"description": "BIP13 script public key",
"$comment": "It must be a valid script hash of the specified type and unique␣

→˓for the identity"
}

(continues on next page)

1.32. Identity 143

Dash Platform, Release latest

(continued from previous page)

}
}

}
],
"required": [
"id",
"type",
"data",
"purpose",
"securityLevel"

],
"additionalProperties": false

}

Public Key id

Each public key in an identity’s publicKeys array must be assigned a unique index number (id).

Public Key type

The type field indicates the algorithm used to derive the key.

Type Description
0 ECDSA Secp256k1 (default)
1 BLS 12-381
2 ECDSA Secp256k1 Hash160
3 BIP13 pay-to-script-hash public key

Public Key data

The data field contains the compressed public key.

Public Key purpose

The purpose field describes which operations are supported by the key. Please refer to DIP11 - Identities for additional
information regarding this.

Type Description
0 Authentication
1 Encryption
2 Decryption
3 Withdraw

144 Chapter 1. Platform docs

https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki
https://github.com/dashpay/dips/blob/master/dip-0011.md#keys

Dash Platform, Release latest

Public Key securityLevel

The securityLevel field indicates how securely the key should be stored by clients. Please refer to DIP11 - Identities
for additional information regarding this.

Level De-
scrip-
tion

Security Practice

0 Mas-
ter

Should always require a user to authenticate when signing a transition. Can only be used to update
an identity.

1 Criti-
cal

Should always require a user to authenticate when signing a transition

2 High Should be available as long as the user has authenticated at least once during a session. Typically
used to sign state transitions, but cannot be used for identity update transitions.

3 Medium Should not require user authentication but must require access to the client device

Public Key readOnly

The readOnly field indicates that the public key can’t be modified if it is set to true. The
value of this field cannot be changed after adding the key.

Public Key disabledAt

The disabledAt field indicates that the key has been disabled. Its value equals the timestamp when the key was
disabled.

Identity balance

Each identity has a balance of credits established by value locked via a layer 1 lock transaction. This credit balance is
used to pay the fees associated with state transitions.

1.32.2 Identity State Transition Details

There are three identity-related state transitions: identity create, identity topup, and identity update. Details are provided
in this section including information about asset locking and signing required for these state transitions.

Identity Creation

Identities are created on the platform by submitting the identity information in an identity create state transition.

Field Type Description
protocolVer-
sion

integer The protocol version (currently 1)

type integer State transition type (2 for identity create)
assetLock-
Proof

object Asset lock proof object proving the layer 1 locking transaction exists and is locked

publicKeys array of keys Public key(s) associated with the identity
signature array of

bytes
Signature of state transition data by the single-use key from the asset lock (65
bytes)

1.32. Identity 145

https://github.com/dashpay/dips/blob/master/dip-0011.md#keys

Dash Platform, Release latest

Each identity must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"type": {
"type": "integer",
"const": 2

},
"assetLockProof": {
"type": "object"

},
"publicKeys": {
"type": "array",
"minItems": 1,
"maxItems": 10,
"uniqueItems": true

},
"signature": {
"type": "array",
"byteArray": true,
"minItems": 65,
"maxItems": 65,
"description": "Signature made by AssetLock one time ECDSA key"

}
},
"additionalProperties": false,
"required": [
"protocolVersion",
"type",
"assetLockProof",
"publicKeys",
"signature"

]
}

Example State Transition

{
"protocolVersion":1,
"type":2,
"signature":"IBTTgge+/VDa/9+n2q3pb4tAqZYI48AX8X3H/uedRLH5dN8Ekh/

→˓sxRRQQS9LaOPwZSCVED6XIYD+vravF2dhYOE=",
"assetLockProof":{
"type":0,
"instantLock":"AQHDHQdekbFZJOQFEe1FnRjoDemL/oPF/v9IME/qphjt5gEAAAB/

→˓OlZB9p8vPzPE55MlegR7nwhXRpZC4d5sYnOIypNgzfdDRsW01v8UtlRoORokjoDJ9hA/
→˓XFMK65iYTrQ8AAAAGI4q8GxtK9LHOT1JipnIfwiiv8zW+C/sbokbMhi/
→˓BsEl51dpoeBQEUAYWT7KRiJ4Atx49zIrqsKvmU1mJQza0Y1YbBSS/b/IPO8StX04bItPpDuTp6zlh/

(continues on next page)

146 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/stateTransition/identityCreate.json

Dash Platform, Release latest

(continued from previous page)

→˓G7YOGzlEoe",
"transaction":

→˓"0300000001c31d075e91b15924e40511ed459d18e80de98bfe83c5feff48304feaa618ede6010000006b483045022100dd0e4a6c25b1c7ed9aec2c93133f6de27b4c695a062f21f0aed1a2999fccf01c0220384aaf84cd5fd1c741fd1739f5c026a492abbfc18cfde296c6d90e98304f2f76012102fb9e87840f7e0a9b01f955d8eb4d1d2a52b32c9c43c751d7a348482c514ad222ffffffff021027000000000000166a14ea15af58c614b050a3b2e6bcc131fe0e7de37b9801710815000000001976a9140ccc680f945e964f7665f57c0108cba5ca77ed1388ac00000000
→˓",
"outputIndex":0

},
"publicKeys":[
{
"id":0,
"type":0,
"purpose":0,
"securityLevel":0,
"data":"AkWRfl3DJiyyy6YPUDQnNx5KERRnR8CoTiFUvfdaYSDS",
"readOnly":false

}
]

}

Identity TopUp

Identity credit balances are increased by submitting the topup information in an identity topup state transition.

Field Type Description
protocolVer-
sion

integer The protocol version (currently 1)

type integer State transition type (3 for identity topup)
assetLock-
Proof

object Asset lock proof object proving the layer 1 locking transaction exists and is locked

identityId array of
bytes

An Identity ID for the identity receiving the topup (can be any identity) (32 bytes)

signature array of
bytes

Signature of state transition data by the single-use key from the asset lock (65
bytes)

Each identity must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"type": {
"type": "integer",
"const": 3

},
"assetLockProof": {
"type": "object"

},
(continues on next page)

1.32. Identity 147

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/stateTransition/identityTopUp.json

Dash Platform, Release latest

(continued from previous page)

"identityId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"signature": {
"type": "array",
"byteArray": true,
"minItems": 65,
"maxItems": 65,
"description": "Signature made by AssetLock one time ECDSA key"

}
},
"additionalProperties": false,
"required": [
"protocolVersion",
"type",
"assetLockProof",
"identityId",
"signature"

]
}

Example State Transition

{
"protocolVersion":1,
"type":3,
"signature":

→˓"IEqOV4DsbVa+nPipva0UrT0z0ZwubwgP9UdlpwBwXbFSWb7Mxkwqzv1HoEDICJ8GtmUSVjp4Hr2x0cVWe7+yUGc=
→˓",
"identityId":"6YfP6tT9AK8HPVXMK7CQrhpc8VMg7frjEnXinSPvUmZC",
"assetLockProof":{
"type":0,
"instantLock":"AQF/

→˓OlZB9p8vPzPE55MlegR7nwhXRpZC4d5sYnOIypNgzQEAAAAm8edm9p8URNEE9PBo0lEzZ2s9nf4u1SV0MaZyB0JTRasiXu8QtTmfqZWjI3qVtOpUhGPu6r/
→˓2fV+0Ffi3AAAAhA77E0aScf+5PTYzgV5WR6VJ/EnjvXyAMmAcu222JyvA7M+5OoCzVF/
→˓IQs2IWaPOFsRl1n5C+dMxdvrxhpVLT8QfZJSl19wzybWrHbGRaHDw4iWHvfYdwyXN+vP8UwDz",
"transaction":

→˓"03000000017f3a5641f69f2f3f33c4e793257a047b9f0857469642e1de6c627388ca9360cd010000006b483045022100d8c383b15a3738d13b029605d242f041bea874cb4d0def1303ca7cdf76092bf102201b1d401ae9e8cdc5efc061249d2a967960dadce53c66e34d249c42049b48b26701210335b684aa510a9b54a3a4f79283e64482a323190045c239fae5ecb0450c78f965ffffffff02e803000000000000166a14f5383f51784bc4a27e2040bdd6cd9aae7fe6814d31690815000000001976a9144a0511ec3362b35983d0a101f0572dd26abce2ee88ac00000000
→˓",
"outputIndex":0

}
}

148 Chapter 1. Platform docs

Dash Platform, Release latest

Identity Update

Identities are updated on the platform by submitting the identity information in an identity update state transition. This
state transition requires either a set of one or more new public keys to add to the identity or a list of existing keys to
disable.

Field Type Description
protocolVer-
sion

integer The protocol version (currently 1)

type integer State transition type (5 for identity update)
identityId array of bytes The identity id (32 bytes)
signature array of bytes Signature of state transition data (65 bytes)
revision integer Identity update revision
publicKeys-
DisabledAt

integer (Optional) Timestamp when keys were disabled. Required if
disablePublicKeys is present.

addPublicKeys array of pub-
lic keys

(Optional) Array of up to 10 new public keys to add to the identity. Required if
adding keys.

disablePub-
licKeys

array of inte-
gers

(Optional) Array of up to 10 existing identity public key ID(s) to disable for the
identity. Required if disabling keys.

signaturePub-
licKeyId

integer The ID of public key used to sign the state transition

Each identity must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"type": {
"type": "integer",
"const": 5

},
"identityId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"signature": {
"type": "array",
"byteArray": true,
"minItems": 65,
"maxItems": 96

},
"revision": {
"type": "integer",
"minimum": 0,
"description": "Identity update revision"

(continues on next page)

1.32. Identity 149

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/stateTransition/identityUpdate.json

Dash Platform, Release latest

(continued from previous page)

},
"publicKeysDisabledAt": {
"type": "integer",
"minimum": 0

},
"addPublicKeys": {
"type": "array",
"minItems": 1,
"maxItems": 10,
"uniqueItems": true

},
"disablePublicKeys": {
"type": "array",
"minItems": 1,
"maxItems": 10,
"uniqueItems": true,
"items": {
"type": "integer",
"minimum": 0

}
},
"signaturePublicKeyId": {
"type": "integer",
"minimum": 0

}
},
"dependentRequired" : {
"disablePublicKeys": ["publicKeysDisabledAt"],
"publicKeysDisabledAt": ["disablePublicKeys"]

},
"anyOf": [
{
"type": "object",
"required": ["addPublicKeys"],
"properties": {
"addPublicKeys": true

}
},
{
"type": "object",
"required": ["disablePublicKeys"],
"properties": {
"disablePublicKeys": true

}
}

],
"additionalProperties": false,
"required": [
"protocolVersion",
"type",
"identityId",
"signature",

(continues on next page)

150 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

"revision",
"signaturePublicKeyId"

]
}

Asset Lock

The identity create and identity topup state transitions both include an asset lock proof object. This object references
the layer 1 lock transaction and includes proof that the transaction is locked.

Currently there are two types of asset lock proofs: InstantSend and ChainLock. Transactions almost always receive
InstantSend locks, so the InstantSend asset lock proof is the predominate type.

InstantSend Asset Lock Proof

The InstantSend asset lock proof is used for transactions that have received an InstantSend lock.

Field Type Description
type integer The asset lock proof type (0 for InstantSend locks)
instantLock array of bytes The InstantSend lock (islock)
transaction array of bytes The asset lock transaction
outputIndex integer Index of the transaction output to be used

Asset locks using an InstantSend lock as proof must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"type": {
"type": "integer",
"const": 0

},
"instantLock": {
"type": "array",
"byteArray": true,
"minItems": 165,
"maxItems": 100000

},
"transaction": {
"type": "array",
"byteArray": true,
"minItems": 1,
"maxItems": 100000

},
"outputIndex": {
"type": "integer",
"minimum": 0

}
},

(continues on next page)

1.32. Identity 151

https://docs.dash.org/projects/core/en/stable/docs/reference/p2p-network-instantsend-messages.html#islock
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/stateTransition/assetLockProof/instantAssetLockProof.json

Dash Platform, Release latest

(continued from previous page)

"additionalProperties": false,
"required": [

"type",
"instantLock",
"transaction",
"outputIndex"

]
}

ChainLock Asset Lock Proof

The ChainLock asset lock proof is used for transactions that have note received an InstantSend lock, but have been
included in a block that has received a ChainLock.

Field Type Description
type array of bytes The type of asset lock proof (1 for ChainLocks)
coreChainLockedHeight integer Height of the ChainLocked Core block containing the transaction
outPoint object The outpoint being used as the asset lock

Asset locks using a ChainLock as proof must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"type": {
"type": "integer",
"const": 1

},
"coreChainLockedHeight": {
"type": "integer",
"minimum": 1,
"maximum": 4294967295

},
"outPoint": {
"type": "array",
"byteArray": true,
"minItems": 36,
"maxItems": 36

}
},
"additionalProperties": false,
"required": [
"type",
"coreChainLockedHeight",
"outPoint"

]
}

152 Chapter 1. Platform docs

https://docs.dash.org/projects/core/en/stable/docs/resources/glossary.html#outpoint
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/identity/stateTransition/assetLockProof/chainAssetLockProof.json

Dash Platform, Release latest

Identity State Transition Signing

Note: The identity create and topup state transition signatures are unique in that they must be signed by the private
key used in the layer 1 locking transaction. All other state transitions will be signed by a private key of the identity
submitting them.

The process to sign an identity create state transition consists of the following steps:

1. Canonical CBOR encode the state transition data - this include all ST fields except the signature

2. Sign the encoded data with private key associated with a lock transaction public key

3. Set the state transition signature to the value of the signature created in the previous step

Code snipits related to signing

/// From rs-dpp
/// abstract_state_transition.rs
/// Signs data with the private key
fn sign_by_private_key(

&mut self,
private_key: &[u8],
key_type: KeyType,
bls: &impl BlsModule,

) -> Result<(), ProtocolError> {
let data = self.to_buffer(true)?;
match key_type {

KeyType::BLS12_381 => self.set_signature(bls.sign(&data, private_key)?.into()),

// https://github.com/dashevo/platform/blob/
→˓9c8e6a3b6afbc330a6ab551a689de8ccd63f9120/packages/js-dpp/lib/stateTransition/
→˓AbstractStateTransition.js#L169

KeyType::ECDSA_SECP256K1 | KeyType::ECDSA_HASH160 => {
let signature = signer::sign(&data, private_key)?;
self.set_signature(signature.to_vec().into());

}

// the default behavior from
// https://github.com/dashevo/platform/blob/

→˓6b02b26e5cd3a7c877c5fdfe40c4a4385a8dda15/packages/js-dpp/lib/stateTransition/
→˓AbstractStateTransition.js#L187

// is to return the error for the BIP13_SCRIPT_HASH
KeyType::BIP13_SCRIPT_HASH => {

return Err(ProtocolError::InvalidIdentityPublicKeyTypeError(
InvalidIdentityPublicKeyTypeError::new(key_type),

))
}

};
Ok(())

}

/// From rust-dashcore
/// signer.rs

(continues on next page)

1.32. Identity 153

Dash Platform, Release latest

(continued from previous page)

/// sign and get the ECDSA signature
pub fn sign(data: &[u8], private_key: &[u8]) -> Result<[u8; 65], anyhow::Error> {

let data_hash = double_sha(data);
sign_hash(&data_hash, private_key)

}

/// signs the hash of data and get the ECDSA signature
pub fn sign_hash(data_hash: &[u8], private_key: &[u8]) -> Result<[u8; 65], anyhow::Error>
→˓ {
let pk = SecretKey::from_slice(private_key)

.map_err(|e| anyhow!("Invalid ECDSA private key: {}", e))?;

let secp = Secp256k1::new();
let msg = Message::from_slice(data_hash).map_err(anyhow::Error::msg)?;

let signature = secp
.sign_ecdsa_recoverable(&msg, &pk)
.to_compact_signature(true);

Ok(signature)
}

1.33 Data Contract

1.33.1 Data Contract Overview

Data contracts define the schema (structure) of data an application will store on Dash Platform. Contracts are described
using JSON Schema which allows the platform to validate the contract-related data submitted to it.

The following sections provide details that developers need to construct valid contracts: documents and definitions. All
data contracts must define one or more documents, whereas definitions are optional and may not be used for simple
contracts.

General Constraints

There are a variety of constraints currently defined for performance and security reasons. The following constraints
are applicable to all aspects of data contracts. Unless otherwise noted, these constraints are defined in the platform’s
JSON Schema rules (e.g. rs-dpp data contract meta schema).

Keyword

The $ref keyword has been disabled since Platform v0.22.

154 Chapter 1. Platform docs

https://json-schema.org/understanding-json-schema/
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json
https://github.com/dashevo/platform/pull/300

Dash Platform, Release latest

Keyword Constraint
default Restricted - cannot be used (defined in DPP logic)
propertyNames Restricted - cannot be used (defined in DPP logic)
uniqueItems: true maxItems must be defined (maximum: 100000)
pattern: <something> maxLength must be defined (maximum: 50000)
format: <something> maxLength must be defined (maximum: 50000)
$ref: <something> Temporarily disabled$ref can only reference $defs - remote references

not supported
if, then, else, allOf, anyOf,
oneOf, not

Disabled for data contracts

dependencies Not supported. Use dependentRequired and dependentSchema instead
additionalItems Not supported. Use items: false and prefixItems instead
patternProperties Restricted - cannot be used for data contracts
pattern Accept only RE2 compatible regular expressions (defined in DPP logic)

Data Size

Note: These constraints are defined in the Dash Platform Protocol logic (not in JSON Schema).

All serialized data (including state transitions) is limited to a maximum size of 16 KB.

Additional Properties

Although JSON Schema allows additional, undefined properties by default, they are not allowed in Dash Platform data
contracts. Data contract validation will fail if they are not explicitly forbidden using the additionalProperties
keyword anywhere properties are defined (including within document properties of type object).

Include the following at the same level as the properties keyword to ensure proper validation:

"additionalProperties": false

1.33.2 Data Contract Object

The data contract object consists of the following fields as defined in the JavaScript reference client (rs-dpp):

Property Type Re-
quired

Description

proto-
colVer-
sion

integer Yes The platform protocol version (currently 1)

$schema string Yes A valid URL (default: https://schema.dash.org/dpp-0-4-0/meta/data-contract)
$id array of

bytes
Yes Contract ID generated from ownerId and entropy (32 bytes; content media type:

application/x.dash.dpp.identifier)
version integer Yes The data contract version
ownerId array of

bytes
Yes Identity that registered the data contract defining the document (32 bytes; content

media type: application/x.dash.dpp.identifier
docu-
ments

object Yes Document definitions (see Documents for details)

$defs object No Definitions for $ref references used in the documents object (if present, must be
a non-empty object with <= 100 valid properties)

1.33. Data Contract 155

https://github.com/google/re2/wiki/Syntax
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/util/serializer.rs#L8
https://json-schema.org/understanding-json-schema/reference/object.html?#properties
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/version/mod.rs#L9
https://schema.dash.org/dpp-0-4-0/meta/data-contract
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L378-L384
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L378-L384
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L389-L395
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L389-L395

Dash Platform, Release latest

Data Contract Schema

Details regarding the data contract object may be found in the rs-dpp data contract meta schema. A truncated version
is shown below for reference:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://schema.dash.org/dpp-0-4-0/meta/data-contract",
"type": "object",
"$defs": {
// Truncated ...

},
"properties": {
"protocolVersion": {
"type": "integer",
"minimum": 0,
"$comment": "Maximum is the latest protocol version"

},
"$schema": {
"type": "string",
"const": "https://schema.dash.org/dpp-0-4-0/meta/data-contract"

},
"$id": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"version": {
"type": "integer",
"minimum": 1

},
"ownerId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"documents": {
"type": "object",
"propertyNames": {
"pattern": "^[a-zA-Z0-9-_]{1,64}$"

},
"additionalProperties": {
"type": "object",
"allOf": [
{
"properties": {
"indices": {
"type": "array",
"items": {

(continues on next page)

156 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json

Dash Platform, Release latest

(continued from previous page)

"type": "object",
"properties": {
"name": {
"type": "string",
"minLength": 1,
"maxLength": 32

},
"properties": {
"type": "array",
"items": {
"type": "object",
"propertyNames": {
"maxLength": 256

},
"additionalProperties": {
"type": "string",
"enum": [
"asc"

]
},
"minProperties": 1,
"maxProperties": 1

},
"minItems": 1,
"maxItems": 10

},
"unique": {
"type": "boolean"

}
},
"required": [
"properties",
"name"

],
"additionalProperties": false

},
"minItems": 1,
"maxItems": 10

},
"type": {
"const": "object"

},
"signatureSecurityLevelRequirement": {
"type": "integer",
"enum": [
0,
1,
2,
3

],
"description": "Public key security level. 0 - Master, 1 - Critical, 2 -␣

→˓High, 3 - Medium. If none specified, High level is used"

(continues on next page)

1.33. Data Contract 157

Dash Platform, Release latest

(continued from previous page)

}
}

},
{
"$ref": "#/$defs/documentSchema"

}
],
"unevaluatedProperties": false

},
"minProperties": 1,
"maxProperties": 100

},
"$defs": {
"$ref": "#/$defs/documentProperties"

}
},
"required": [
"protocolVersion",
"$schema",
"$id",
"version",
"ownerId",
"documents"

],
"additionalProperties": false

}

Example

{
"id": "AoDzJxWSb1gUi2dSmvFeUFpSsjZQRJaqCpn7vCLkwwJj",
"ownerId": "7NUbPf231ixt1kVBQsBvSMMBxd7AgPad8KtdtfFGhXDP",
"schema": "https://schema.dash.org/dpp-0-4-0/meta/data-contract",
"documents": {
"note": {
"properties": {
"message": {
"type": "string"

}
},
"additionalProperties": false

}
}

}

158 Chapter 1. Platform docs

Dash Platform, Release latest

Data Contract id

The data contract $id is a hash of the ownerId and entropy as shown here.

// From the Rust reference implementation (rs-dpp)
// generate_data_contract.rs
/// Generate data contract id based on owner id and entropy
pub fn generate_data_contract_id(owner_id: impl AsRef<[u8]>, entropy: impl AsRef<[u8]>) -
→˓> Vec<u8> {
let mut b: Vec<u8> = vec![];
let _ = b.write(owner_id.as_ref());
let _ = b.write(entropy.as_ref());
hash(b)

}

Data Contract version

The data contract version is an integer representing the current version of the contract. This
property must be incremented if the contract is updated.

Data Contract Documents

The documents object defines each type of document required by the data contract. At a minimum, a document
must consist of 1 or more properties. Documents may also define indices and a list of required properties. The
additionalProperties properties keyword must be included as described in the constraints section.

The following example shows a minimal documents object defining a single document (note) that has one property
(message).

{
"note": {
"type": "object",
"properties": {
"message": {
"type": "string"

}
},
"additionalProperties": false

}
}

Document Properties

The properties object defines each field that will be used by a document. Each field consists of an object that, at a
minimum, must define its data type (string, number, integer, boolean, array, object). Fields may also apply
a variety of optional JSON Schema constraints related to the format, range, length, etc. of the data.

Note: The object type is required to have properties defined either directly or via the data contract’s $defs. For
example, the body property shown below is an object containing a single string property (objectProperty):

1.33. Data Contract 159

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/generate_data_contract.rs

Dash Platform, Release latest

const contractDocuments = {
message: {
"type": "object",
properties: {
body: {
type: "object",
properties: {
objectProperty: {
type: "string"

},
},
additionalProperties: false,

},
header: {
type: "string"

}
},
additionalProperties: false

}
};

Note: A full explanation of the capabilities of JSON Schema is beyond the scope of this document. For more infor-
mation regarding its data types and the constraints that can be applied, please refer to the JSON Schema reference
documentation.

Property Constraints

There are a variety of constraints currently defined for performance and security reasons.

Description Value
Minimum number of properties 1
Maximum number of properties 100
Minimum property name length 1 (Note: minimum length was 3 prior to v0.23)
Maximum property name length 64
Property name characters Alphanumeric (A-Z, a-z, 0-9)Hyphen (-) Underscore (_)

Prior to Dash Platform v0.23 there were stricter limitations on minimum property name length and the characters that
could be used in property names.

Required Properties (Optional)

Each document may have some fields that are required for the document to be valid and other fields that are optional.
Required fields are defined via the required array which consists of a list of the field names from the document that
must be present. The required object should be excluded for documents without any required properties.

"required": [
"<field name a>",
"<field name b>"

]

160 Chapter 1. Platform docs

https://json-schema.org/understanding-json-schema/reference/index.html
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L22
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L23
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L20
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L20

Dash Platform, Release latest

Example
The following example (excerpt from the DPNS contract’s domain document) demonstrates a document that has 6
required fields:

"required": [
"label",
"normalizedLabel",
"normalizedParentDomainName",
"preorderSalt",
"records",
"subdomainRules"

]

Document Indices

Document indices may be defined if indexing on document fields is required.

Note: Dash Platform v0.23 only allows ascending default ordering for indices.

The indices array consists of:

• One or more objects that each contain:

– A unique name for the index

– A properties array composed of a <field name: sort order> object for each document field that
is part of the index (sort order: asc only for Dash Platform v0.23)

– An (optional) unique element that determines if duplicate values are allowed for the document type

Note:

• The indices object should be excluded for documents that do not require indices.

• When defining an index with multiple properties (i.e a compound index), the order in which the properties are
listed is important. Refer to the mongoDB documentation for details regarding the significance of the order as
it relates to querying capabilities. Dash uses GroveDB which works similarly but does requiring listing all the
index’s fields in query order by statements.

"indices": [
{
"name": "Index1",
"properties": [
{ "<field name a>": "asc" },
{ "<field name b>": "asc" }

],
"unique": true|false

},
{
"name": "Index2",
"properties": [
{ "<field name c>": "asc" },

],
}

]

1.33. Data Contract 161

https://github.com/dashpay/platform/pull/435
https://docs.mongodb.com/manual/core/index-compound/#prefixes
https://github.com/dashevo/grovedb

Dash Platform, Release latest

Index Constraints

For performance and security reasons, indices have the following constraints. These constraints are subject to change
over time.

Description Value
Minimum/maximum length of index name 1 / 32
Maximum number of indices 10
Maximum number of unique indices 3
Maximum number of properties in a single index 10
Maximum length of indexed string property 63
Note: Dash Platform v0.22+. does not allow indices for arraysMaximum length of indexed byte array
property

255

Note: Dash Platform v0.22+. does not allow indices for arraysMaximum number of indexed array items 1024
Usage of $id in an index disallowed N/A

Example
The following example (excerpt from the DPNS contract’s preorder document) creates an index named saltedHash
on the saltedDomainHash property that also enforces uniqueness across all documents of that type:

"indices": [
{
"name": "saltedHash",
"properties": [
{
"saltedDomainHash": "asc"

}
],
"unique": true

}
]

Full Document Syntax

This example syntax shows the structure of a documents object that defines two documents, an index, and a required
field.

{
"<document name a>": {
"type": "object",
"properties": {
"<field name b>": {
"type": "<field data type>"

},
"<field name c>": {
"type": "<field data type>"

},
},
"indices": [
{
"name": "<index name>",

(continues on next page)

162 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L413
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L414
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L446
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L40
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L433
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L39
https://github.com/dashpay/platform/pull/225
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L43
https://github.com/dashpay/platform/pull/225
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_contract/validation/data_contract_validator.rs#L44
https://github.com/dashpay/platform/pull/178

Dash Platform, Release latest

(continued from previous page)

"properties": [
{
"<field name c>": "asc"

}
],
"unique": true|false

},
],
"required": [
"<field name c>"

]
"additionalProperties": false

},
"<document name x>": {
"type": "object",
"properties": {
"<property name y>": {
"type": "<property data type>"

},
"<property name z>": {
"type": "<property data type>"

},
},
"additionalProperties": false

},
}

Document Schema

Full document schema details may be found in this section of the rs-dpp data contract meta schema.

Data Contract Definitions

Definitions are currently unavailable

The optional $defs object enables definition of aspects of a schema that are used in multiple places. This is done
using the JSON Schema support for reuse. Items defined in $defs may then be referenced when defining documents
through use of the $ref keyword.

Note:

• Properties defined in the $defs object must meet the same criteria as those defined in the documents object
(e.g. the additionalProperties properties keyword must be included as described in the constraints section).

• Data contracts can only use the $ref keyword to reference their own $defs. Referencing external definitions is
not supported by the platform protocol.

Example
The following example shows a definition for a message object consisting of two properties:

{
// Preceding content truncated ...

(continues on next page)

1.33. Data Contract 163

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/dataContractMeta.json#L368-L471
https://json-schema.org/understanding-json-schema/structuring.html#defs

Dash Platform, Release latest

(continued from previous page)

"$defs": {
"message": {
"type": "object",
"properties": {
"timestamp": {
"type": "number"

},
"description": {
"type": "string"

}
},
"additionalProperties": false

}
}

}

1.33.3 Data Contract State Transition Details

There are two data contract-related state transitions: data contract create and data contract update. Details are provided
in this section.

Data Contract Creation

Data contracts are created on the platform by submitting the data contract object in a data contract create state transition
consisting of:

Field Type Description
protocolVersion integer The platform protocol version (currently 1)
type integer State transition type (0 for data contract create)
dataContract data contract ob-

ject
Object containing the data contract details

entropy array of bytes Entropy used to generate the data contract ID. Generated as shown here.
(32 bytes)

signaturePublicK-
eyId

number The id of the identity public key that signed the state transition

signature array of bytes Signature of state transition data (65 or 96 bytes)

Each data contract state transition must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"type": {
"type": "integer",

(continues on next page)

164 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/version/mod.rs#L9
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/stateTransition/dataContractCreate.json

Dash Platform, Release latest

(continued from previous page)

"const": 0
},
"dataContract": {
"type": "object"

},
"entropy": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32

},
"signaturePublicKeyId": {
"type": "integer",
"minimum": 0

},
"signature": {
"type": "array",
"byteArray": true,
"minItems": 65,
"maxItems": 96

}
},
"additionalProperties": false,
"required": [
"protocolVersion",
"type",
"dataContract",
"entropy",
"signaturePublicKeyId",
"signature"

]
}

Example State Transition

{
"protocolVersion":1,
"type":0,
"signature":"IFmEb/OwyYG0yn33U4/

→˓kieH4JL63Ft25GAun+XqWOalkbDrpL9z+OH+Sb03xsyMNzoILC2T1Q8yV1q7kCmr0HuQ=",
"signaturePublicKeyId":0,
"dataContract":{
"protocolVersion":1,
"$id":"44dvUnSdVtvPPeVy6mS4vRzJ4zfABCt33VvqTWMM8VG6",
"$schema":"https://schema.dash.org/dpp-0-4-0/meta/data-contract",
"version":1,
"ownerId":"6YfP6tT9AK8HPVXMK7CQrhpc8VMg7frjEnXinSPvUmZC",
"documents":{
"note":{
"type":"object",
"properties":{
"message":{

(continues on next page)

1.33. Data Contract 165

Dash Platform, Release latest

(continued from previous page)

"type":"string"
}

},
"additionalProperties":false

}
}

},
"entropy":"J2Sl/Ka9T1paYUv6f2ec5MzaaACs9lcUvOskBU0SMlo="

}

Data Contract Update

Existing data contracts can be updated in certain backwards-compatible ways. The following aspects
of a data contract can be updated:

• Adding a new document

• Adding a new optional property to an existing document

• Adding non-unique indices for properties added in the update

Data contracts are updated on the platform by submitting the modified data contract
object in a data contract update state transition consisting of:

Field Type Description
protocolVer-
sion

integer The platform protocol version (currently 1)

type integer State transition type (4 for data contract update)
dataContract data con-

tract object
Object containing the updated data contract detailsNote: the data contract’s
version property must be incremented with each update

signature-
PublicKeyId

number The id of the identity public key that signed the state transition

signature array of
bytes

Signature of state transition data (65 or 96 bytes)

Each data contract state transition must comply with this JSON-Schema definition established in
rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"type": {
"type": "integer",
"const": 4

},
"dataContract": {
"type": "object"

(continues on next page)

166 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/version/mod.rs#L9
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/data_contract/stateTransition/dataContractUpdate.json

Dash Platform, Release latest

(continued from previous page)

},
"signaturePublicKeyId": {
"type": "integer",
"minimum": 0

},
"signature": {
"type": "array",
"byteArray": true,
"minItems": 65,
"maxItems": 96

}
},
"additionalProperties": false,
"required": [
"protocolVersion",
"type",
"dataContract",
"signaturePublicKeyId",
"signature"

]
}

Example State Transition

{
"protocolVersion":1,
"type":4,
"signature":"IBboAbqbGBiWzyJDyhwzs1GujR6Gb4m5Gt/QCugLV2EYcsBaQKTM/

→˓Stq7iyIm2YyqkV8VlWqOfGebW2w5Pjnfak=",
"signaturePublicKeyId":0,
"dataContract":{
"protocolVersion":1,
"$id":"44dvUnSdVtvPPeVy6mS4vRzJ4zfABCt33VvqTWMM8VG6",
"$schema":"https://schema.dash.org/dpp-0-4-0/meta/data-contract",
"version":2,
"ownerId":"6YfP6tT9AK8HPVXMK7CQrhpc8VMg7frjEnXinSPvUmZC",
"documents":{
"note":{
"type":"object",
"properties":{
"message":{
"type":"string"

},
"author":{
"type":"string"

}
},
"additionalProperties":false

}
}

}
}

1.33. Data Contract 167

Dash Platform, Release latest

Data Contract State Transition Signing

Data contract state transitions must be signed by a private key associated with the contract owner’s identity.

The process to sign a data contract state transition consists of the following steps:

1. Canonical CBOR encode the state transition data - this include all ST fields except the signature and
signaturePublicKeyId

2. Sign the encoded data with a private key associated with the ownerId

3. Set the state transition signature to the value of the signature created in the previous step

4. Set the state transitionsignaturePublicKeyId to the public key id corresponding to the key used to sign

1.34 State Transition

1.34.1 State Transition Overview

State transitions are the means for submitting data that creates, updates, or deletes platform data and results in a change
to a new state. Each one must contain:

• Common fields present in all state transitions

• Additional fields specific to the type of action the state transition provides (e.g. creating an identity)

Fees

State transition fees are paid via the credits established when an identity is created. Credits are created at a rate of 1000
credits/satoshi. Fees for actions vary based on parameters related to storage and computational effort that are defined
in rs-dpp.

Size

All serialized data (including state transitions) is limited to a maximum size of 16 KB.

Common Fields

All state transitions include the following fields:

Field Type Description
proto-
colVer-
sion

integer The platform protocol version (currently 1)

type integer State transition type:0 - data contract create1 - documents batch2 - identity create3 - iden-
tity topup4 - data contract update5 - identity update

signature array of
bytes

Signature of state transition data (65 bytes)

Additionally, all state transitions except the identity create and topup state transitions include:

Field Type Description
signaturePublicKeyId integer The id of the identity public key that signed the state transition (=> 0)

168 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/identity/credits_converter.rs#L3
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/identity/credits_converter.rs#L3
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/state_transition/fee/constants.rs
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/util/serializer.rs#L8

Dash Platform, Release latest

1.34.2 State Transition Types

Data Contract Create

Field Type Description
dataContract data contract object Object containing valid data contract details
entropy array of bytes Entropy used to generate the data contract ID (32 bytes)

More detailed information about the dataContract object can be found in the data contract section.

Entropy Generation

Entropy is included in Data Contracts and Documents.

// From the Rust reference implementation (rs-dpp)
// entropyGenerator.js
fn generate(&self) -> anyhow::Result<[u8; 32]> {
let mut buffer = [0u8; 32];
getrandom(&mut buffer).context("generating entropy failed")?;
Ok(buffer)

}

Data Contract Update

Field Type Description
dataContract data contract object Object containing valid data contract details

More detailed information about the dataContract object can be found in the data contract section.

Documents Batch

Field Type Description
ownerId array of bytes Identity submitting the document(s) (32 bytes)
transitions array of transition objects Document create, replace, or delete transitions (up to 10 objects)

More detailed information about the transitions array can be found in the document section.

Identity Create

Field Type Description
assetLockProof array of bytes Lock outpoint from the layer 1 locking transaction (36 bytes)
publicKeys array of keys Public key(s) associated with the identity (maximum number of keys: 10)

More detailed information about the publicKeys object can be found in the identity section.

1.34. State Transition 169

https://docs.dash.org/projects/core/en/stable/docs/resources/glossary.html#outpoint

Dash Platform, Release latest

Identity TopUp

Field Type Description
assetLock-
Proof

array of bytes Lock outpoint from the layer 1 locking transaction (36 bytes)

identityId array of bytes An Identity ID for the identity receiving the topup (can be any identity) (32 bytes)

Identity Update

Field Type Description
identityId array of

bytes
The Identity ID for the identity being updated (32 bytes)

revision integer Identity update revision. Used for optimistic concurrency control. Incremented by one
with each new update so that the update will fail if the underlying data is modified between
reading and writing.

addPub-
licKeys

array of
public
keys

(Optional) Array of up to 10 new public keys to add to the identity. Required if adding
keys.

dis-
ablePub-
licKeys

array of
integers

(Optional) Array of up to 10 existing identity public key ID(s) to disable for the identity.
Required if disabling keys.

publicK-
eysDis-
abledAt

integer (Optional) Timestamp when keys were disabled. Required if disablePublicKeys is
present.

1.34.3 State Transition Signing

State transitions must be signed by a private key associated with the identity creating the state transition. Since v0.23,
each identity must have at least two keys: a primary key (security level 0) that is only used when signing identity update
state transitions and an additional key (security level 2) that is used to sign all other state transitions.

The process to sign a state transition consists of the following steps:

1. Canonical CBOR encode the state transition data - this include all ST fields except the signature and
signaturePublicKeyId

2. Sign the encoded data with a private key associated with the identity creating the state transition

3. Set the state transition signature to the value of the signature created in the previous step

4. For all state transitions other than identity create or topup, set the state transitionsignaturePublicKeyId to
the public key id corresponding to the key used to sign

170 Chapter 1. Platform docs

https://docs.dash.org/projects/core/en/stable/docs/resources/glossary.html#outpoint

Dash Platform, Release latest

Signature Validation

The signature validation (see js-dpp) verifies that:

1. The identity exists

2. The identity has a public key

3. The identity’s public key is of type ECDSA

4. The state transition signature is valid

The example test output below shows the necessary criteria:

validateStateTransitionIdentitySignatureFactory
✓✓✓ should pass properly signed state transition
✓✓✓ should return invalid result if owner id doesn't exist
✓✓✓ should return MissingPublicKeyError if the identity doesn't have a matching public␣

→˓key
✓✓✓ should return InvalidIdentityPublicKeyTypeError if type is not exist
✓✓✓ should return InvalidStateTransitionSignatureError if signature is invalid
Consensus errors

✓✓✓ should return InvalidSignaturePublicKeySecurityLevelConsensusError if␣
→˓InvalidSignaturePublicKeySecurityLevelError was thrown

✓✓✓ should return PublicKeySecurityLevelNotMetConsensusError if␣
→˓PublicKeySecurityLevelNotMetError was thrown

✓✓✓ should return WrongPublicKeyPurposeConsensusError if WrongPublicKeyPurposeError␣
→˓was thrown

✓✓✓ should return PublicKeyIsDisabledConsensusError if PublicKeyIsDisabledError was␣
→˓thrown

✓✓✓ should return InvalidStateTransitionSignatureError if DPPError was thrown
✓✓✓ should throw unknown error
✓✓✓ should not verify signature on dry run

1.35 Document

1.35.1 Document Submission

Documents are sent to the platform by submitting the them in a document batch state transition consisting of:

Field Type Description
protocolVersion integer The platform protocol version (currently 1)
type integer State transition type (1 for document batch)
ownerId array Identity submitting the document(s) (32 bytes)
transitions array of transition ob-

jects
Document create, replace, or delete transitions (up to 10
objects)

signaturePublicK-
eyId

number The id of the identity public key that signed the state transition

signature array Signature of state transition data (65 or 96 bytes)

Each document batch state transition must comply with this JSON-Schema definition established in rs-dpp:

1.35. Document 171

https://github.com/dashpay/platform/blob/v0.24.5/packages/js-dpp/test/unit/stateTransition/validation/validateStateTransitionIdentitySignatureFactory.spec.js
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/document/stateTransition/documentsBatch.json

Dash Platform, Release latest

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"type": {
"type": "integer",
"const": 1

},
"ownerId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"transitions": {
"type": "array",
"items": {
"type": "object"

},
"minItems": 1,
"maxItems": 10

},
"signaturePublicKeyId": {
"type": "integer",
"minimum": 0

},
"signature": {
"type": "array",
"byteArray": true,
"minItems": 65,
"maxItems": 96

}
},
"additionalProperties": false,
"required": [
"protocolVersion",
"type",
"ownerId",
"transitions",
"signaturePublicKeyId",
"signature"

]
}

172 Chapter 1. Platform docs

Dash Platform, Release latest

Document Base Transition

All document transitions in a document batch state transition are built on the base schema and include the following
fields:

Field Type Description
$id array The document ID (32 bytes)
$type string Name of a document type found in the data contract associated with the

dataContractId (1-64 characters)
$action array of in-

tegers
Action the platform should take for the associated document

$dataCon-
tractId

array Data contract ID generated from the data contract’s ownerId and entropy (32
bytes)

Each document transition must comply with the document transition base schema:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"$id": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"$type": {
"type": "string"

},
"$action": {
"type": "integer",
"enum": [0, 1, 3]

},
"$dataContractId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

}
},
"required": [
"$id",
"$type",
"$action",
"$dataContractId"

],
"additionalProperties": false

}

1.35. Document 173

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/document/stateTransition/documentTransition/base.json

Dash Platform, Release latest

Document id

The document $id is created by hashing the document’s dataContractId, ownerId, type, and entropy as shown
in rs-dpp.

// From the Rust reference implementation (rs-dpp)
// generate_document_id.rs
pub fn generate_document_id(

contract_id: &Identifier,
owner_id: &Identifier,
document_type: &str,
entropy: &[u8],

) -> Identifier {
let mut buf: Vec<u8> = vec![];

buf.extend_from_slice(&contract_id.to_buffer());
buf.extend_from_slice(&owner_id.to_buffer());
buf.extend_from_slice(document_type.as_bytes());
buf.extend_from_slice(entropy);

Identifier::from_bytes(&hash(&buf)).unwrap()
}

Document Transition Action

Action Name Description
0 Create Create a new document with the provided data
1 Replace Replace an existing document with the provided data
2 RESERVED Unused action
3 Delete Delete the referenced document

Document Create Transition

The document create transition extends the base schema to include the following additional fields:

Field Type Description
$entropy array Entropy used in creating the document ID. Generated as shown here. (32 bytes)
$createdAt integer (Optional)
$updatedAt integer (Optional)

Each document create transition must comply with this JSON-Schema definition established in rs-dpp (in addition to
the document transition base schema) that is required for all document transitions):

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"$entropy": {
"type": "array",

(continues on next page)

174 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/document/generate_document_id.rs
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/document/stateTransition/documentTransition/create.json
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/document/stateTransition/documentTransition/base.json

Dash Platform, Release latest

(continued from previous page)

"byteArray": true,
"minItems": 32,
"maxItems": 32

},
"$createdAt": {
"type": "integer",
"minimum": 0

},
"$updatedAt": {
"type": "integer",
"minimum": 0

}
},
"required": [
"$entropy"

],
"additionalProperties": false

}

Note: The document create transition must also include all required properties of the document as defined in the data
contract.

The following example document create transition and subsequent table demonstrate how the document transition
base, document create transition, and data contract document definitions are assembled into a complete transition for
inclusion in a state transition:

{
"$action": 0,
"$dataContractId": "5wpZAEWndYcTeuwZpkmSa8s49cHXU5q2DhdibesxFSu8",
"$id": "6oCKUeLVgjr7VZCyn1LdGbrepqKLmoabaff5WQqyTKYP",
"$type": "note",
"$entropy": "yfo6LnZfJ5koT2YUwtd8PdJa8SXzfQMVDz",
"message": "Tutorial Test @ Mon, 27 Apr 2020 20:23:35 GMT"

}

Field Required By
$action Document base transition
$dataCon-
tractId

Document base transition

$id Document base transition
$type Document base transition
$entropy Document create transition
message Data Contract (the message document defined in the referenced data contract -

5wpZAEWndYcTeuwZpkmSa8s49cHXU5q2DhdibesxFSu8)

1.35. Document 175

Dash Platform, Release latest

Document Replace Transition

The document replace transition extends the base schema to include the following additional fields:

Field Type Description
$revision integer Document revision (=> 1)
$updatedAt integer (Optional)

Each document replace transition must comply with this JSON-Schema definition established in rs-dpp (in addition to
the document transition base schema) that is required for all document transitions):

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"$revision": {
"type": "integer",
"minimum": 1

},
"$updatedAt": {
"type": "integer",
"minimum": 0

}
},
"required": [
"$revision"

],
"additionalProperties": false

}

Note: The document create transition must also include all required properties of the document as defined in the data
contract.

The following example document create transition and subsequent table demonstrate how the document transition
base, document create transition, and data contract document definitions are assembled into a complete transition for
inclusion in a state transition:

{
"$action": 1,
"$dataContractId": "5wpZAEWndYcTeuwZpkmSa8s49cHXU5q2DhdibesxFSu8",
"$id": "6oCKUeLVgjr7VZCyn1LdGbrepqKLmoabaff5WQqyTKYP",
"$type": "note",
"$revision": 1,
"message": "Tutorial Test @ Mon, 27 Apr 2020 20:23:35 GMT"

}

176 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/document/stateTransition/documentTransition/replace.json
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/schema/document/stateTransition/documentTransition/base.json

Dash Platform, Release latest

Field Required By
$action Document base transition
$dataCon-
tractId

Document base transition

$id Document base transition
$type Document base transition
$revision Document revision
message Data Contract (the message document defined in the referenced data contract -

5wpZAEWndYcTeuwZpkmSa8s49cHXU5q2DhdibesxFSu8)

Document Delete Transition

The document delete transition only requires the fields found in the base document transition.

Example Document Batch State Transition

{
"protocolVersion": 1,
"type": 1,
"signature": "ICu/H7MoqxNUzznP9P2aTVEo91VVy0T8M3QWCH/

→˓7dg2UVokG98TbD4DQB4E8SD4GzHoRrBMycJ75SbT2AaF9hFc=",
"signaturePublicKeyId": 0,
"ownerId": "4ZJsE1Yg8AosmC4hAeo3GJgso4N9pCoa6eCTDeXsvdhn",
"transitions": [
{
"$id": "8jm8iHsYE6ENENvFVeFVFMCwfgEqo5P1iR2q4KAYgpbS",
"$type": "note",
"$action": 1,
"$dataContractId": "AnmBaYH13RyiuvBkBD6qkdc36H5DKt6ToMrkqgUnnywz",
"message": "Updated document @ Mon, 26 Oct 2020 14:58:31 GMT",
"$revision": 2

}
]

}

1.35. Document 177

Dash Platform, Release latest

1.35.2 Document Object

The document object represents the data provided by the platform in response to a query. Responses consist of an array
of these objects containing the following fields as defined in the Rust reference client (rs-dpp):

Property Type Re-
quired

Description

protocolVer-
sion

inte-
ger

Yes The platform protocol version (currently 1)

$id array Yes The document ID (32 bytes)
$type string Yes Document type defined in the referenced contract (1-64 characters)
$revision inte-

ger
No Document revision (=>1)

$dataContrac-
tId

array Yes Data contract ID generated from the data contract’s ownerId and entropy
(32 bytes)

$ownerId array Yes Identity of the user submitting the document (32 bytes)
$createdAt inte-

ger
(Op-
tional)

Time (in milliseconds) the document was created

$updatedAt inte-
ger

(Op-
tional)

Time (in milliseconds) the document was last updated

Each document object must comply with this JSON-Schema definition established in rs-dpp:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"$protocolVersion": {
"type": "integer",
"$comment": "Maximum is the latest protocol version"

},
"$id": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"$type": {
"type": "string"

},
"$revision": {
"type": "integer",
"minimum": 1

},
"$dataContractId": {
"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"$ownerId": {

(continues on next page)

178 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/schema/document/documentExtended.json
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/schema/document/documentExtended.json

Dash Platform, Release latest

(continued from previous page)

"type": "array",
"byteArray": true,
"minItems": 32,
"maxItems": 32,
"contentMediaType": "application/x.dash.dpp.identifier"

},
"$createdAt": {
"type": "integer",
"minimum": 0

},
"$updatedAt": {
"type": "integer",
"minimum": 0

}
},
"required": [
"$protocolVersion",
"$id",
"$type",
"$revision",
"$dataContractId",
"$ownerId"

],
"additionalProperties": false

}

Example Document Object

{
"$protocolVersion": 1,
"$id": "4mWnFcDDzCpeLExJqE8v7pfN4EERC8NE2xn4hw3VKriU",
"$type": "note",
"$dataContractId": "63au7XVDt8aHtPrsYKoHx2bnRTSenwH62pDN1BQ5n5m9",
"$ownerId": "7TkaE5uhG3T9AhyEkAvYCqZvRH4pyBibhjuSYPReNfME",
"$revision": 1,
"message": "Tutorial Test @ Mon, 26 Oct 2020 15:54:35 GMT",
"$createdAt": 1603727675072,
"$updatedAt": 1603727675072

}

1.36 Data Trigger

1.36.1 Data Trigger Overview

Although data contracts provide much needed constraints on the structure of the data being stored on Dash Platform,
there are limits to what they can do. Certain system data contracts may require server-side validation logic to operate
effectively. For example, DPNS must enforce some rules to ensure names remain DNS compatible. Dash Platform
Protocol (DPP) supports this application-specific custom logic using Data Triggers.

1.36. Data Trigger 179

Dash Platform, Release latest

1.36.2 Details

Since all application data is submitted in the form of documents, data triggers are defined in the context of documents.
To provide even more granularity, they also incorporate the document transition action so separate triggers can be
created for the CREATE, REPLACE, or DELETE actions.

When document state transitions are received, DPP checks if there is a trigger associated with the document transition
type and action. If there is, it then executes the trigger logic.

Note: Successful execution of the trigger logic is necessary for the document to be accepted and applied to the platform
state.

Example

As an example, DPP contains several data triggers for DPNS as defined in the data triggers factory. The domain
document has added constraints for creation. All DPNS document types have constraints on replacing or deleting:

Data
Contract

Document Ac-
tion(s)

Trigger Description

DPNS domain CREATE Enforces DNS compatibility, validates provided hashes, and restricts top-
level domain (TLD) registration

—- —- —- —-
DPNS All Document

Types
REPLACE Prevents updates to existing documents

DPNS All Document
Types

DELETE Prevents deletion of existing documents

DPNS Trigger Constraints

The following table details the DPNS constraints applied via data triggers. These constraints are in addition to the ones
applied directly by the DPNS data contract.

Docu-
ment

Action Constraint

domain CREATE Full domain length <= 253 characters
domain CREATE normalizedLabel matches lowercase label
domain CREATE ownerId matches records.dashUniqueIdentityId or dashAliasIdentityId

(whichever one is present)
domain CREATE Only creating a top-level domain with an authorized identity
domain CREATE Referenced normalizedParentDomainName must be an existing parent domain
domain CREATE Subdomain registration for non top level domains prevented if subdomainRules.

allowSubdomains is true
domain CREATE Subdomain registration only allowed by the parent domain owner if subdomainRules.

allowSubdomains is false
domain CREATE Referenced preorder document must exist
domain REPLACE Action not allowed
domain DELETE Action not allowed
preorder REPLACE Action not allowed
preorder DELETE Action not allowed

180 Chapter 1. Platform docs

https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_trigger/get_data_triggers_factory.rs
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/lib/dataTrigger/dpnsTriggers/createDomainDataTrigger.js
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_trigger/reject_data_trigger.rs
https://github.com/dashpay/platform/blob/v0.24.5/packages/rs-dpp/src/data_trigger/reject_data_trigger.rs

Dash Platform, Release latest

1.37 Consensus Errors

1.37.1 Platform Error Codes

A comprehensive set of consensus error codes were introduced in Dash Platform v0.21. The tables below follow the
codes found in code.js of the consensus source code.

The error codes are organized into four categories that each span 1000 error codes. Each category may be further
divided into sub-categories. The four categories and their error code ranges are:

Category Code range Description
Basic 1000 - 1999 Errors encountered while validating structure and data
Signature 2000 - 2999 Errors encountered while validating identity existence and state transition signature
Fee 3000 - 3999 Errors encountered while validating an identity’s balance is sufficient to pay fees
State 4000 - 4999 Errors encounter while validating state transitions against the platform state

1.37.2 Basic

Basic errors occupy the codes ranging from 1000 to 1999. This range is divided into several categories for clarity.

Decoding Errors

Code Error Description Comment
1000 ProtocolVersionParsingError

1001 SerializedObjectParsingError

1002 UnsupportedProtocolVersionError

1003 IncompatibleProtocolVersionError

Structure Errors

Code Error Description Comment
1004 JsonSchemaCompilationError

1005 JsonSchemaError

1006 InvalidIdentifierError

1060 ValueError Added in v0.24

1.37. Consensus Errors 181

https://github.com/dashpay/platform/blob/master/packages/rs-dpp/src/errors/consensus/codes.rs

Dash Platform, Release latest

Data Contract Errors

Code Error Description Comment
1007 DataContractMaxDepthExceedError

1008 DuplicateIndexError

1009 IncompatibleRe2PatternError

1010 InvalidCompoundIndexError

1011 InvalidDataContractIDError

1012 InvalidIndexedPropertyConstraintError

1013 InvalidIndexPropertyTypeError

1014 InvalidJsonSchemaRefError

1015 SystemPropertyIndexAlreadyPresentError

1016 UndefinedIndexPropertyError

1017 UniqueIndicesLimitReachedError

1048 DuplicateIndexNameError Added in v0.22
1050 InvalidDataContractVersionError 4013 prior to v0.23
1051 IncompatibleDataContractSchemaError 4014 prior to v0.23
1052 DataContractImmutablePropertiesUpdateError 4015 prior to v0.23
1053 DataContractUniqueIndicesChangedError 4016 prior to v0.23
1054 DataContractInvalidIndexDefinitionUpdateError Added in v0.23
1055 DataContractHaveNewUniqueIndexError Added in v0.23

182 Chapter 1. Platform docs

Dash Platform, Release latest

Document Errors

Code Error Description Comment
1018 DataContractNotPresentError

1019 DuplicateDocumentTransitionsWithIDsError

1020 DuplicateDocumentTransitionsWithIndicesError

1021 InconsistentCompoundIndexDataError

1022 InvalidDocumentTransitionActionError

1023 InvalidDocumentTransitionIDError

1024 InvalidDocumentTypeError

1025 MissingDataContractIDBasicError

1026 MissingDocumentTransitionActionError

1027 MissingDocumentTransitionTypeError

1028 MissingDocumentTypeError

1.37. Consensus Errors 183

Dash Platform, Release latest

Identity Errors

Code Error Description Comment
1029 DuplicatedIdentityPublicKeyBasicError

1030 DuplicatedIdentityPublicKeyIDBasicError

1031 IdentityAssetLockProofLockedTransactionMismatchError

1032 IdentityAssetLockTransactionIsNotFoundError

1033 IdentityAssetLockTransactionOutputAlreadyExistsError

1034 IdentityAssetLockTransactionOutputNotFoundError

1035 InvalidAssetLockProofCoreChainHeightError

1036 InvalidAssetLockProofTransactionHeightError

1037 InvalidAssetLockTransactionOutputReturnSizeError

1038 InvalidIdentityAssetLockTransactionError

1039 InvalidIdentityAssetLockTransactionOutputError

1040 InvalidIdentityPublicKeyDataError

1041 InvalidInstantAssetLockProofError

1042 InvalidInstantAssetLockProofSignatureError

1046 MissingMasterPublicKeyError Added in v0.22
1047 InvalidIdentityPublicKeySecurityLevelError Added in v0.22
1056 InvalidIdentityKeySignatureError Added in v0.23
1057 InvalidIdentityCreditWithdrawalTransitionOutputScriptError Added in v0.24
1058 InvalidIdentityCreditWithdrawalTransitionCoreFeeError Added in v0.24
1059 NotImplementedIdentityCreditWithdrawalTransitionPoolingError Added in v0.24

State Transition Errors

Code Error Description Comment
1043 InvalidStateTransitionTypeError

1044 MissingStateTransitionTypeError

1045 StateTransitionMaxSizeExceededError

184 Chapter 1. Platform docs

Dash Platform, Release latest

1.37.3 Signature Errors

Signature errors occupy the codes ranging from 2000 to 2999.

Code Error Description Comment
2000 IdentityNotFoundError

2001 InvalidIdentityPublicKeyTypeError

2002 InvalidStateTransitionSignatureError

2003 MissingPublicKeyError

2004 InvalidSignaturePublicKeySecurityLevelError Added in v0.23
2005 WrongPublicKeyPurposeError Added in v0.23
2006 PublicKeyIsDisabledError Added in v0.23
2007 PublicKeySecurityLevelNotMetError Added in v0.23

1.37.4 Fee Errors

Fee errors occupy the codes ranging from 3000 to 3999.

Code Error Description Comment
3000 BalanceIsNotEnoughError Current credits balance is insufficient to pay fee

1.37.5 State

State errors occupy the codes ranging from 4000 to 4999. This range is divided into several categories for clarity.

Data Contract Errors

Code Error Description Comment
4000 DataContractAlreadyPresentError

1.37. Consensus Errors 185

Dash Platform, Release latest

Document Errors

Code Error Description Comment
4004 DocumentAlreadyPresentError

4005 DocumentNotFoundError

4006 DocumentOwnerIdMismatchError

4007 DocumentTimestampsMismatchError

4008 DocumentTimestampWindowViolationError

4009 DuplicateUniqueIndexError

4010 InvalidDocumentRevisionError

Identity Errors

Code Error Description Comment
4011 IdentityAlreadyExistsError

4012 IdentityPublicKeyDisabledAtWindowViolationError Added in v0.23
4017 IdentityPublicKeyIsReadOnlyError Added in v0.23
4018 InvalidIdentityPublicKeyIdError Added in v0.23
4019 InvalidIdentityRevisionError Added in v0.23
4020 StateMaxIdentityPublicKeyLimitReachedError Added in v0.23
4021 DuplicatedIdentityPublicKeyStateError Added in v0.23
4022 DuplicatedIdentityPublicKeyIdStateError Added in v0.23
4023 IdentityPublicKeyIsDisabledError Added in v0.23
4024 IdentityInsufficientBalanceError Added in v0.24

Data Trigger Errors

Code Error Description Comment
4001 DataTriggerConditionError

4002 DataTriggerExecutionError

4003 DataTriggerInvalidResultError

186 Chapter 1. Platform docs

Dash Platform, Release latest

1.38 Repository Overview

Change to monorepo

Dash Platform v0.21 migrated to a monorepo structure to streamline continuous integration builds and
testing. A number of the libraries below were previously independent repositories but now are aggregated
into the packages directory of the monorepo (https://github.com/dashpay/platform/).

1.38.1 js-dash-sdk

Dash client-side JavaScript library for application development and wallet payment/signing. Uses wallet-lib, dapi-
client, and dashcore-lib to expose layer-1 and layer-2 functionality. Main user is app developers.

npm: dash
Repository

1.38.2 js-dapi-client

Client library for accessing DAPI Endpoints . Enables interaction with Dash platform through the DAPI hosted on
masternodes. Provides automatic masternode discovery starting from any initial masternode.

npm: @dashevo/dapi-client
Repository

1.38.3 dapi

A decentralized API for the Dash network. Exposes endpoints for interacting with the layer 1 blockchain and layer 2
platform services.

Repository

1.38.4 js-dpp

JavaScript implementation of Dash Platform Protocol. Performs validation of all data submitted to the platform.

npm: @dashevo/dpp
Repository

1.38.5 Supporting Repositories

drive

Manages the platform state and provides decentralized application storage on the Dash network.

Repository

1.38. Repository Overview 187

https://en.wikipedia.org/wiki/Monorepo
https://github.com/dashevo/platform/tree/master/packages
https://github.com/dashpay/platform/
https://github.com/dashevo/platform/tree/master/packages/js-dash-sdk
https://github.com/dashevo/platform/tree/master/packages/js-dapi-client
https://github.com/dashevo/platform/tree/master/packages/dapi
https://github.com/dashevo/platform/tree/master/packages/js-dpp
https://github.com/dashevo/platform/tree/master/packages/js-drive

Dash Platform, Release latest

dashcore-lib

A JavaScript Dash library

npm: @dashevo/dashcore-lib
Repository: https://github.com/dashpay/dashcore-lib

grove-db

A hierarchical authenticated data structure. The construction is based on Database Outsourcing with Hierarchical
Authenticated Data Structures.

Repository

wallet-lib

An extensible JavaScript Wallet Library for Dash. Provides layer 1 SPV wallet functionality.

npm: @dashevo/wallet-lib
Repository

dapi-grpc

Decentralized API gRPC definition files and generated clients. Used by clients (e.g. dapi-client) to interact with DAPI
endpoints.

npm: @dashevo/dapi-grpc
Repository

dash-network-deploy

Tool for assisting Dash devnet network deployment and testing.

https://github.com/dashpay/dash-network-deploy

platform-test-suite

Test suite for end-to-end testing of Dash Platform by running some real-life scenarios against a Dash Network.

Repository

rs-drive

Implements secondary indices for Platform in conjunction with GroveDB.

Repository

188 Chapter 1. Platform docs

https://github.com/dashpay/dashcore-lib
https://eprint.iacr.org/2015/351.pdf
https://eprint.iacr.org/2015/351.pdf
https://github.com/dashevo/grovedb
https://github.com/dashevo/platform/tree/master/packages/wallet-lib
https://github.com/dashevo/platform/tree/master/packages/dapi-grpc
https://github.com/dashpay/dash-network-deploy
https://github.com/dashevo/platform/tree/master/packages/platform-test-suite
https://github.com/dashevo/rs-drive

Dash Platform, Release latest

dashmate

A distribution package for Dash masternode installation.

Repository

1.38.6 Contract Repositories

dashpay-contract

DashPay contract documents JSON Schema

Repository

dpns-contract

DPNS contract documents JSON Schema

Repository

1.39 Source Code

Source code produced by Dash Core Group is located in two GitHub organizations:

• Dashpay - Dash Core Blockchain software and documention

• Dashevo - Dash Platform software

1.40 Overview

Dash library for JavaScript/TypeScript ecosystem (Wallet, DAPI, Primitives, BLS, . . .)

Dash library provides access via DAPI to use both the Dash Core network and Dash Platform on supported networks.
The Dash Core network can be used to broadcast and receive payments. Dash Platform can be used to manage identities,
register data contracts for applications, and submit or retrieve application data via documents.

1.40.1 Install

From NPM

In order to use this library, you will need to add our NPM package to your project.

Having NodeJS installed, just type:

npm install dash

1.39. Source Code 189

https://github.com/dashevo/platform/tree/master/packages/dashmate
https://github.com/dashevo/platform/tree/master/packages/dashpay-contract
https://github.com/dashevo/platform/tree/master/packages/dpns-contract
https://github.com/dashpay
https://github.com/dashevo
https://www.npmjs.org/package/dash
https://github.com/dashpay/platform/actions/workflows/release.yml
https://github.com/dashpay/platform/releases/latest
https://github.com/RichardLitt/standard-readme
https://github.com/dashpay/platform/#supported-networks
https://www.npmjs.com/dash
https://nodejs.org/

Dash Platform, Release latest

From unpkg

<script src="https://unpkg.com/dash"></script>

Usage examples

• Generate a mnemonic

• Receive money and display balance

• Pay to another address

• Use another BIP44 account

Dash Platform Tutorials

See the Tutorial section of the Dash Platform documentation for examples.

1.40.2 Licence

MIT © Dash Core Group, Inc.

1.41 Examples

1.41.1 Fetching an identity from its name

Assuming you have created an identity and attached a name to it (see how to register an identity and how to attach it
to a name), you will then be able to directly recover an identity from its names. See below:

const client = new Dash.Client({
wallet: {
mnemonic: '', // Your app mnemonic, which holds the identity

},
});

// This is the name previously registered in DPNS.
const identityName = 'alice';

const nameDocument = await client.platform.names.resolve(`${identityName}.dash`);
const identity = await client.platform.identities.get(nameDocument.ownerId);

190 Chapter 1. Platform docs

https://github.com/dashevo/dashjs/blob/master/LICENCE.md

Dash Platform, Release latest

1.41.2 Generate a new mnemonic

In order to be able to keep your private keys private, we encourage to create your own mnemonic instead of using
those from the examples (that might be empty). Below, you will be proposed two options allowing you to create a new
mnemonic, depending on the level of customisation you need.

Dash.Client

By passing null to the mnemonic value of the wallet options, you can get Wallet-lib to generate a new mnemonic for
you.

const Dash = require("dash");
const client = new Dash.Client({

network: "testnet",
wallet: {
mnemonic: null,

},
});
const mnemonic = client.wallet.exportWallet();
console.log({mnemonic});

Dash.Mnemonic

const Dash = require("dash");
const {Mnemonic} = Dash.Core;

const mnemnonic = new Mnemonic().toString()

Language selection

const {Mnemonic} = Dash.Core;
const {CHINESE, ENGLISH, FRENCH, ITALIAN, JAPANESE, SPANISH} = Mnemonic.Words;
console.log(new Mnemonic(Mnemonic.Words.FRENCH).toString())

Entropy size

By default, the value for mnemonic is 128 (12 words), but you can generate a 24 words (or other) :

const {Mnemonic} = Dash.Core;
console.log(new Mnemonic(256).toString())

You can even replace the word list by your own, providing a list of 2048 unique words.

1.41. Examples 191

Dash Platform, Release latest

1.41.3 Paying to another address

In order to pay, you need to have an existing balance.
The below code will allow you to pay to a single address a specific amount of satoshis.

const Dash = require('dash');

const mnemonic = ''; // your mnemonic here.
const client = new Dash.Client({

wallet: {
mnemonic,

},
});

async function payToRecipient(account) {
const transaction = account.createTransaction({
recipient: 'yNPbcFfabtNmmxKdGwhHomdYfVs6gikbPf',
satoshis: 10000,

});
const transactionId = await account.broadcastTransaction(transaction);

}

client.wallet.getAccount().then(payToRecipient);

See more on create transaction options here.

1.41.4 Receive money and display balance

Initialize client

Initialize the SDK Client with your generated mnemonic passed as an option.

const Dash = require("dash");
const mnemonic = ''// your mnemonic here.
const client = new Dash.Client({

wallet: {
mnemonic,

}
});

async function showBalance() {
const account = await client.wallet.getAccount();
const totalBalance = account.getTotalBalance();
console.log(`Account's total balance: ${totalBalance} duffs`);

}

Having your client instance set up, you will be able to access the account and wallet instance generated from your
mnemonic.

By default getAccount() returns the first BIP44 account.
You can read more on how to use a different account.

192 Chapter 1. Platform docs

https://dashpay.github.io/platform/Wallet-library/account/createTransaction/

Dash Platform, Release latest

Generate a receiving address

Dash wallet supports two different types of addresses:

• external addresses used for receiving funds from other addresses

• internal addresses used for change outputs of outgoing transactions

• For your privacy, you might want to generate a new address for each payment:

async function generateUnusedAddress() {
const account = await client.wallet.getAccount();
const { address } = account.getUnusedAddress();
console.log(`Unused external address: ${address}`);

}

This above code will generate a new unique (never used) address.

Displaying your balance

Dash Wallet returns the balance in duffs (1 Dash is equal to 100.000.000 duffs)

getTotalBalance() function takes into account confirmed and unconfirmed transactions (not included in a block).
It is recommended to check the confirmed balance before making a payment:

async function showBalance() {
const account = await client.wallet.getAccount();
const totalBalance = account.getTotalBalance();
const confirmedBalance = account.getConfirmedBalance();
const unconfirmedBalance = account.getUnconfirmedBalance();
console.log(`Account balance:

Confirmed: ${confirmedBalance}
Unconfirmed: ${unconfirmedBalance}
Total: ${totalBalance}

`);
}

Listen for event on received transaction

When a new unconfirmed transaction is received, you can receive an event, and then validate the address or perform an
action if needed.

// FETCHED/UNCONFIRMED_TRANSACTION event is currently disabled

async function listenUnconfirmedTransaction() {
const account = await client.wallet.getAccount();
account.on('FETCHED/UNCONFIRMED_TRANSACTION', (data) => {

console.dir(data);
});

}

1.41. Examples 193

Dash Platform, Release latest

Get address at specific index

In case you want to retrieve an address at specific index:

async function getAddressAtIndex() {
const account = await client.wallet.getAccount();
const { address: externalAddress } = account.getAddress(2);
const { address: internalAddress } = account.getAddress(2, 'internal');

}

1.41.5 Sign and verify messages

Dash SDK exports the Message constructor inside the Core namespace new Dash.Core.Message

const Dash = require('dash');

const mnemonic = '';

const client = new Dash.Client({
wallet: {
mnemonic,

},
});

async function signAndVerify() {
const account = await client.wallet.getAccount();

const pk = new Dash.Core.PrivateKey();
const message = new Dash.Core.Message('hello, world');
const signed = account.sign(message, pk);
const verified = message.verify(pk.toAddress().toString(), signed.toString());

}

1.41.6 Using a different account

Clients initialized with a mnemonic support multiple accounts as defined in BIP44.

By default client.wallet.getAccount() returns the account at index 0.

To access other accounts, pass the index option:

194 Chapter 1. Platform docs

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Dash Platform, Release latest

const secondAccount = await client.wallet.getAccount({ index: 1 })

1.42 Getting started

1.42.1 About Schemas

Schemas represents the application data structure, a JSON Schema language based set of rules that allows the creation
of a Data Contract.

You can read more in the Dash Platform Documentation - Data contract section.

1.42.2 Core concepts

The Dash Core Developer Guide will answer most of questions about the fundamentals of Dash. However, some
elements provided by the SDK need to be grasped, so we will quickly cover some of those.

Wallet

At the core of Dash is the Payment Chain. In order to be able to transact on it, one needs to have a set of UTXOs that
are controlled by a Wallet instance.

In order to access your UTXO, you will have to provide a valid mnemonic that will unlock the Wallet and automatically
fetch the associated UTXOs.

When an SDK instance is created, you can access your wallet via the client.wallet variable. (Check wallet-lib
documentation for more details)

Account

Since the introduction of deterministic wallets (BIP44), a wallet is represented by multiple accounts.

It is the instance you will use most of the time for receiving or broadcasting payments.

You can access your account with client.getWalletAccount(). See how to use a different account if you need to
get an account at a specific index.

App Schema and Contracts

The Dash Platform Chain provides developers with the ability to create applications.
Each application requires a set of rules and conditions described as a portable document in the form of a JSON Schema.

When registered, those applications schemas are called contracts and contains a contractId (namespace : client.
platform.contracts).

By default, this library supports Dash Platform Name Service (DPNS) (to attach a name to an identity), under the
namespace client.platform.names for testnet.

See: how to use multiple apps

1.42. Getting started 195

https://docs.dash.org/projects/core/en/stable/docs/guide/introduction.html
https://docs.dash.org/projects/core/en/stable/docs/guide/block-chain-transaction-data.html
https://dashpay.github.io/platform/Wallet-library/
https://dashpay.github.io/platform/Wallet-library/
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

Dash Platform, Release latest

1.42.3 Dash Platform applications

DPNS

DPNS is handled in the Dash SDK Client under the namespace client.platform.names.*'. Read more here

DashPay

The DashPay contract is registered on testnet under contract id Bwr4WHCPz5rFVAD87RqTs3izo4zpzwsEdKPWUT1NS1C7.
Its functionality is not incorporated with the Dash SDK at this time.

1.42.4 Working with multiple apps

When working with other registered contracts, you will need to know their contractId and reference it in the SDK
constructor.

Assuming a contract DashPay has the following contractId: "77w8Xqn25HwJhjodrHW133aXhjuTsTv9ozQaYpSHACE3".
You can then pass it as an option.

const client = new Dash.Client({
apps: {
dashpay: {
contractId: '77w8Xqn25HwJhjodrHW133aXhjuTsTv9ozQaYpSHACE3'

}
}

});

This allow the method client.platform.documents.get to provide you field selection. Therefore, if the contract
has a profile field that you wish to access, the SDK will allow you to use dot-syntax for access :

const bobProfile = await client.platform.documents.get('dashpay.profile', { name: 'bob' }
→˓);

1.42.5 Quick start

In order to use this library, you will need to add our NPM package to your project.

Having NodeJS installed, just type :

npm install dash

Initialization

Let’s create a Dash SDK client instance specifying both our mnemonic and the schema we wish to work with.

const Dash = require('dash');
const opts = {

wallet: {
mnemonic: "arena light cheap control apple buffalo indicate rare motor valid␣

→˓accident isolate",
},

(continues on next page)

196 Chapter 1. Platform docs

https://www.npmjs.com/dash
https://nodejs.org/

Dash Platform, Release latest

(continued from previous page)

};
const client = new Dash.Client(opts);
client.wallet.getAccount().then(async (account) => {
// Do something

})

Quick note: If no mnemonic is provided or mnemonic: null is passed inside the wallet option, a new mnemonic
will be generated.

Make a payment

client.wallet.getAccount().then(async (account) => {
const transaction = account.createTransaction({
recipient: 'yixnmigzC236WmTXp9SBZ42csyp9By6Hw8',
amount: 0.12,

});
await account.broadcastTransaction(transaction);

});

Interact with Dash Platform

See the Tutorial section of the Dash Platform documentation for examples.

1.42.6 TypeScript

In order to use Dash SDK with TypeScript.

Create an index.ts file

import Dash from 'dash';
const clientOpts = {
wallet: {
mnemonic: null, // Will generate a new address, you should keep it.

},
};
const client = new Dash.Client(clientOpts);

const initializeAccount = async () => {
const account = await client.wallet.getAccount();
const balance = account.getTotalBalance();
console.log(`Account balance: ${balance}`)

}

Have a following tsconfig.json file

{
"compilerOptions": {
"module": "commonjs",
"moduleResolution": "node",
"esModuleInterop": true

(continues on next page)

1.42. Getting started 197

Dash Platform, Release latest

(continued from previous page)

}
}

Compile: tsc -p tsconfig.json
Run: node index.js

1.43 Platform

The Dash Platform provides a technology stack on the top of Dash Network that allows creation of feature-rich decen-
tralized applications.

You can learn more from the Dash Platform Documentation - What is Dash Platform?

1.43.1 Platform components

• DAPI: A decentralized API that runs on all Masternodes and offers gRPC endpoints for retrieving payment chain
metadata (blocks, transactions), as well as application data (documents, contracts, identities).

• Drive: Application chain storage layer where the data defined by Data Contracts is stored and managed.

• DPNS: Naming service provided by a Dash Platform App

Contracts

What is a contract

Contracts are registered sets of rules defined in a JSON Application Schema.

See the Dash Platform documentation for more information about Data Contracts.

Create

Usage: client.platform.contracts.create(contractDefinitions, identity)
Description: This method will return a Contract object initialized with the parameters defined and apply to the used
identity.

Parameters:

parameters type required Description
contractDefinitions JSONDataContract yes The defined JSON Application Schema
identity Identity yes A valid registered application identity

Example:

const identityId = '';// Your identity identifier.

// Your valid json contract definitions
const contractDefinitions = {
note: {

(continues on next page)

198 Chapter 1. Platform docs

Dash Platform, Release latest

(continued from previous page)

properties: {
message: {
type: "string"

}
},
additionalProperties: false

}
};
const identity = await client.platform.identities.get(identityId);
const contract = client.platform.contracts.create(contractDefinitions, identity);

// You can use the validate method from DPP to validate the created contract
const validationResult = client.platform.dpp.dataContract.validate(contract);

Note: When your contract is created, it will only exist locally. Use the publish method to register it.

Returns: Contract.

Get

Usage: client.platform.contracts.get(contractId)
Description: This method will allow you to fetch back a contract from its id.

Parameters:

parameters type required Description
identifier string yes Will fetch back the contract matching the identifier

Example: await client.platform.contracts.get('77w8Xqn25HwJhjodrHW133aXhjuTsTv9ozQaYpSHACE3')

Returns: Contract (or null if it’s not a registered contract).

Publish

Usage: client.platform.contracts.publish(contract, identity)
Description: This method will sign and broadcast any valid contract.

Parameters:

parameters type required Description
contract Contract yes A valid created contract
identity Identity yes A valid registered application identity

Example:

const identityId = '';// Your identity identifier.
const identity = await client.platform.identities.get(identityId);
// See the contract.create documentation for more on how to create a dataContract
const contract = await client.platform.contracts.create(contractDefinitions, identity);
await client.platform.contracts.publish(contract, identity);

Returns : DataContractCreateTransition.

1.43. Platform 199

Dash Platform, Release latest

Update

Usage: client.platform.contracts.update(contract, identity)
Description: This method will sign and broadcast an updated valid contract.

Parameters:

parameters type required Description
contract Contract yes A valid created contract
identity Identity yes A valid registered application identity

Returns: DataContractUpdateTransition.

Documents

What is a document

Documents in Dash Platform are similar to those in standard document-oriented databases (MongoDB,. . .).
They represent a record consisting of one, or multiples field-value pairs and should respect the structure of the data-
Contract on which they are submitted in.

See more on the Dash Platform documentation about Data Contract.

Broadcast

Usage: client.platform.document.broadcast(documents, identity)
Description: This method will broadcast the document on the Application Chain

Parameters:

parameters type required Description
documents Object yes

documents.create ExtendedDocument[] no array of valid created document to create
documents.replace ExtendedDocument[] no array of valid created document to replace
documents.delete ExtendedDocument[] no array of valid created document to delete
identity Identity yes A valid registered identity

Example:

const identityId = '';// Your identity identifier
const identity = await client.platform.identities.get(identityId);

const helloWorldDocument = await client.platform.documents.create(
// Assuming a contract tutorialContract is registered with a field note
'tutorialContract.note',
identity,
{ message: 'Hello World'},

);

await client.platform.documents.broadcast({ create: [helloWorldDocument] }, identity);

200 Chapter 1. Platform docs

Dash Platform, Release latest

Returns: documents.

Create

Usage: client.platform.documents.create(typeLocator, identity, documentOpts)
Description: This method will return a ExtendedDocument object initialized with the parameters defined and apply to
the used identity.

Parameters:

parameters type required Description
dotLocator string yes Field of a specific application, under the form appName.fieldName
identity Identity yes A valid registered identity
docOpts Object yes A valid data that match the data contract structure

Example:

const identityId = '';// Your identity identifier
const identity = await client.platform.identities.get(identityId);

const helloWorldDocument = await client.platform.documents.create(
// Assume a contract helloWorldContract is registered with a field note
'helloWorldContract.note',
identity,
{ message: 'Hello World'},

);

Note: When your document is created, it will only exist locally, use the broadcast method to register it.

Returns: ExtendedDocument

Get

Usage: client.platform.documents.get(typeLocator, opts)
Description: This method will allow you to fetch back documents matching the provided parameters.

Parameters:

parameters type required Description
typeLocator string yes Field of a specific application, under the form appName.fieldName
opts object no (default: {}) Query options of the request

Queries options:

parameters type required Description
where array no Mongo-like where query
orderBy array no Mongo-like orderBy query
limit integer no how many objects to fetch
startAt integer no number of objects to skip
startAfter integer no exclusive skip

Learn more about query syntax.

1.43. Platform 201

Dash Platform, Release latest

Example:

const queryOpts = {
where: [

['normalizedLabel', '==', 'alice'],
['normalizedParentDomainName', '==', 'dash'],

],
};

await client.platform.documents.get('dpns.domain', queryOpts);

Identities

What is an identity

An Identity is a blockchain-based identifier for individuals (users) and applications.
Identities are the atomic element that, when linked with additional applications, can be extended to provide new func-
tionality.

Read more on the Dash Platform documentation about Identity.
You might also want to consult the usage for the DPNS Name Service in order to attach a name to your created identity.

Credits

Each identity contains a credit balance. The ratio is 1 duff = 1000 credits.

Get

Usage: client.platform.identities.get(identityId)
Description: This method will allow you to fetch back an identity from its id.

Parameters:

parameters type required Description
identifier string yes Will fetch back the identity matching the identifier

Example: await client.platform.identities.get('3GegupTgRfdN9JMS8R6QXF3B2VbZtiw63eyudh1oMJAk')

Returns: Identity (or null if it does not exist).

Register

Usage: client.platform.identities.register()
Description: This method will register a new identity for you.

Parameters:

parameters type required Description
fundingAmount number no Defaults: 10000. Allow to set a funding amount in duffs (satoshis).

Example: await client.platform.identities.register()

202 Chapter 1. Platform docs

Dash Platform, Release latest

Note: The created identity will be associated to the active account. You might want to know more about how to change
your active account.

Returns: Identity.

Topup

Usage: client.platform.identities.topUp(identity, amount)
Description: This method will topup the provided identity’s balance.

The identity balance might slightly vary from the topped up amount because of the transaction fee estimation.

Parameters:

parame-
ters

type re-
quired

Description

identity Iden-
tity

yes A valid registered identity

amount num-
ber

yes A duffs (satoshis) value corresponding to the amount you want to top up to the
identity.

Example:

const identityId = '';// Your identity identifier
const identity = await client.platform.identities.get(identityId);
await client.platform.identities.topUp(identity.getId(), 10000);

console.log(`New identity balance: ${identity.balance}`)

Returns: Boolean.

Names

What is DPNS

DPNS is a special Dash Platform Application that is intended to provide a naming service for the Application Chain.

Decoupling name from the blockchain identity enables a unique user experience coupled with the highest security while
remaining compatible with Decentralized Identifiers.

Limitation: max length of 63 characters on charset 0-9,A-Z(case insensitive), -.

Domain names are linked to an Identity.

Register

Usage: client.platform.names.register(name, records, identity)
Description: This method will create a DPNS record matching your identity to the user or appname defined.

Parameters:

1.43. Platform 203

https://www.w3.org/TR/did-core/

Dash Platform, Release latest

parameters type re-
quired

Description

name String yes An alphanumeric (1-63 character) value used for human-identification (can contain
- but not as the first or last character). If a name with no parent domain is entered,
‘.dash’ is used.

records Ob-
ject

yes records object having only one of the following items

records.dashUniqueIdentityIdString no Unique Identity ID for this name record
records.dashAliasIdentityIdString no Used to signify that this name is the alias for another id
identity Iden-

tity
yes A valid registered identity

Example: await client.platform.names.register('alice', { dashUniqueIdentityId: identity.
getId() }, identity)

Returns: the created domain document

Resolve

Usage: client.platform.names.resolve('<name>.dash')
Description: This method will allow you to resolve a DPNS record from its humanized name.

Parameters:

parameters type required Description
name String yes An alphanumeric (2-63) value used for human-identification (can contains -)

Example: await client.platform.names.resolve('alice.dash')

Returns : ExtendedDocument (or null if do not exist).

ResolveByRecord

Usage: client.platform.names.resolveByRecord(record, value)
Description: This method will allow you to resolve a DPNS record by identity ID.

Parameters:

parameters type required Description
record String yes Type of the record (dashUniqueIdentityId or dashAliasIdentityId)
value String yes Identifier value for the record

Example:

This example will describe how to resolve names by the dash unique identity id.

const identityId = '3ge4yjGinQDhxh2aVpyLTQaoka45BkijkoybfAkDepoN';
const document = await client.platform.names.resolveByRecord('dashUniqueIdentityId',␣
→˓identityId);

Returns: array of ExtendedDocument.

204 Chapter 1. Platform docs

Dash Platform, Release latest

Search

Usage: client.platform.names.search(labelPrefix, parentDomain)
Description: This method will allow you to search all records matching the label prefix on the specified parent domain.

Parameters:

parameters type required Description
labelPrefix String yes label prefix to search for
parentDomain String yes parent domain name on which to perform the search

Example:

This example will describe how to search all names on the parent domain dash that starts with the label prefix al.
It will resolves names documents such as alice, alex etc. . .

const labelPrefix = 'al';
const parentDomain = 'dash';
const document = await client.platform.names.search(labelPrefix, parentDomain);

Returns: Documents matching the label prefix on the parent domain.

1.44 Usage

1.44.1 DAPI

About DAPI

DAPI (Decentralized API) is a distributed and decentralized endpoints provided by the Masternode Network.

Get the DAPI-Client instance

const dapiClient = client.getDAPIClient();

The usage is then described here.

1.44.2 Dashcore Lib primitives

All Dashcore lib primitives are exposed via the Core namespace.

const Dash = require('dash');
const {

Core: {
Block,
Transaction,
Address,
// ...

}
} = Dash;

1.44. Usage 205

Dash Platform, Release latest

Transaction

The Transaction primitive allows creating and manipulating transactions. It also allows signing transactions with a
private key.
Supports fee control and input/output access (which allows passing a specific script).

const { Transaction } = Dash.Core;
const tx = new Transaction(txProps)

Access the Transaction documentation on dashpay/dashcore-lib

Address

Standardized representation of a Dash Address. Address can be instantiated from a String, PrivateKey, PublicKey,
HDPrivateKey or HdPublicKey.
Pay-to-script-hash (P2SH) multi-signature addresses from an array of PublicKeys are also supported.

const { Address } = Dash.Core;

Access the Address documentation on dashpay/dashcore-lib

Block

Given a binary representation of the block as input, the Block class allows you to have a deserialized representation of
a Block or its header. It also allows validating the transactions in the block against the header merkle root.

The block’s transactions can also be explored by iterating over elements in array (block.transactions).

const { Block } = Dash.Core;

Access the Block documentation on dashpay/dashcore-lib

UnspentOutput

Representation of an UnspentOutput (also called UTXO as in Unspent Transaction Output).
Mostly useful in association with a Transaction and for Scripts.

const { UnspentOutput } = Dash.Core.Transaction;

Access the UnspentOutput documentation on dashpay/dashcore-lib

HDPublicKey

Hierarchical Deterministic (HD) version of the PublicKey.
Used internally by Wallet-lib and for exchange between peers (DashPay)

const { HDPublicKey } = Dash.Core;`

Access the HDKeys documentation on dashpay/dashcore-lib

206 Chapter 1. Platform docs

https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/transaction.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/address.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/block.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/unspentoutput.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/hierarchical.md#hdpublickey

Dash Platform, Release latest

HDPrivateKey

Hierarchical Deterministic (HD) version of the PrivateKey.
Used internally by Wallet-lib.

const { HDPrivateKey } = Dash.Core;

Access the HDKeys documentation on dashpay/dashcore-lib

PublicKey

const { PublicKey } = Dash.Core;

Access the PublicKey documentation on dashpay/dashcore-lib

PrivateKey

const { PrivateKey } = Dash.Core;

Access the PrivateKey documentation on dashpay/dashcore-lib

Mnemonic

Implementation of BIP39 Mnemonic code for generative deterministic keys.
Generates a random mnemonic with the chosen language, validates a mnemonic or returns the associated HDPri-
vateKey.

const { Mnemonic } = Dash.Core;

Access the Mnemonic documentation on dashpay/dashcore-lib

Network

A representation of the internal parameters relative to the selected network. By default, all primitives works with
‘livenet’.

const { Network } = Dash.Core;

Access the Network documentation on dashpay/dashcore-lib

Script

const { Script } = Dash.Core.Transaction;

Access the Script documentation on dashpay/dashcore-lib

1.44. Usage 207

https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/hierarchical.md#hdprivatekey
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/publickey.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/privatekey.md
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/mnemonic.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/networks.md
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/script.md

Dash Platform, Release latest

Input

const { Input } = Dash.Core.Transaction;

Access the Transaction documentation on dashpay/dashcore-lib

Output

const { Output } = Dash.Core.Transaction;

Access the Transaction documentation on dashpay/dashcore-lib

1.45 Wallet

1.45.1 About Wallet-lib

When Dash.Client is initiated with a mnemonic property, a wallet instance becomes accessible via client.wallet
property.

To initialize the wallet account and synchronize with the network, use client.wallet.getAccount().

Find out more about the Wallet in its complete documentation

Accounts

Getting an account

When Wallet is initialized with mnemonic, it holds multiple Accounts according to BIP44.
Each Account holds the keys needed to make a payments from it.

Wallet’s getAccount method used to access an account:

const client = new Dash.Client({
wallet: {
mnemonic: "maximum blast eight orchard waste wood gospel siren parent deer athlete␣

→˓impact",
},

});

const account = await client.wallet.getAccount()
// Do something with account

As optional parameter, an integer representing the account index can be passed as parameter. By default, index account
on call is 0.

client.wallet.getAccount({ index: 1 })

Awaiting for the getAccount() promise is necessary to ensure the wallet is synced-up with the network and make
sure that the UTXO set is ready to be used for payment/signing.

208 Chapter 1. Platform docs

https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/transaction.md#adding-inputs
https://github.com/dashpay/dashcore-lib/blob/master/docs/core-concepts/transaction.md#handling-outputs
https://dashpay.github.io/platform/Wallet-library/

Dash Platform, Release latest

Signing and encryption

Obtain account

const account = await client.wallet.getAccount();

Sign a Transaction

const tx = new Dash.Core.Transaction({
// ...txOpts

});
const signedTx = account.sign(tx);

Encrypt a message

const message = 'Something';
const signedMessage = account.encrypt('AES', message, 'secret');

Decrypt a message

const encrypted = 'U2FsdGVkX19JLa+1UpbMcut1/QFWLMlKUS+iqz+7Wl4=';
const message = account.decrypt('AES', encrypted, 'secret');

1.46 Overview

1.46.1 DAPI-Client

Client library used to access Dash DAPI endpoints

This library enables HTTP-based interaction with the Dash blockchain and Dash Platform via the decentralized API
(DAPI) hosted on Dash masternodes.

• DAPI-Client provides automatic server (masternode) discovery using either a default seed node or a user-
supplied one

• DAPI-Client maps to DAPI’s RPC and gRPC endpoints

1.46. Overview 209

https://www.npmjs.com/package/@dashevo/dapi-client
https://github.com/dashevo/js-dapi-client/actions/workflows/test_and_release.yml
https://github.com/dashpay/platform/releases/latest
https://github.com/RichardLitt/standard-readme
https://github.com/dashpay/platform/tree/master/packages/dapi
https://github.com/dashpay/platform/tree/master/packages/dapi/lib/rpcServer/commands
https://github.com/dashpay/platform/tree/master/packages/dapi/lib/grpcServer/handlers

Dash Platform, Release latest

Install

ES5/ES6 via NPM

In order to use this library in Node, you will need to add it to your project as a dependency.

Having NodeJS installed, just type in your terminal :

npm install @dashevo/dapi-client

CDN Standalone

For browser usage, you can also directly rely on unpkg :

<script src="https://unpkg.com/@dashevo/dapi-client"></script>

1.46.2 Licence

MIT © Dash Core Group, Inc.

1.47 Quick start

1.47.1 ES5/ES6 via NPM

In order to use this library in Node, you will need to add it to your project as a dependency.

Having NodeJS installed, just type in your terminal :

npm install @dashevo/dapi-client

1.47.2 CDN Standalone

For browser usage, you can also directly rely on unpkg :

<script src="https://unpkg.com/@dashevo/dapi-client"></script>

You can see an example usage here .

1.47.3 Initialization

const DAPIClient = require('@dashevo/dapi-client');
const client = new DAPIClient();

(async () => {
const bestBlockHash = await client.core.getBestBlockHash();
console.log(bestBlockHash);

})();

210 Chapter 1. Platform docs

https://nodejs.org/
https://github.com/dashevo/dapi-client/blob/master/LICENCE.md
https://nodejs.org/
https://github.com/dashpay/platform/blob/master/packages/js-dapi-client/examples/web/web.usage.html

Dash Platform, Release latest

1.47.4 Quicknotes

This package allows you to fetch & send information from both the payment chain (layer 1) and the application chain
(layer 2, a.k.a Platform chain).

1.48 Usage

1.48.1 DAPIClient

Usage: new DAPIClient(options)
Description: This method creates a new DAPIClient instance.

Parameters:

parameters type required[def
value]

Description

options Object

op-
tions.dapiAddressProvider

DAPIAd-
dressProvider

no[ListDAPIAddressProvider]Allow to override the default dapiAddressProvider (do
not allow seeds or dapiAddresses params)

options.seeds string[] no[seeds] Allow to override default seeds (to connect to specific
node)

options.network string no[=evonet] Allow to setup the network to be used (livenet, testnet,
evonet,..)

options.timeout number no[=2000] Used to specify the timeout time in milliseconds.
options.retries number no[=3] Used to specify the number of retries before aborting and

erroring a request.
op-
tions.baseBanTime

number no[=6000]

Returns : DAPIClient instance.

const DAPIClient = require('@dashevo/dapi-client');
const client = new DAPIClient({

timeout: 5000,
retries: 3,
network: 'livenet'

});

1.48.2 Core

broadcastTransaction

Usage: await client.core.broadcastTransaction(transaction)
Description: Allow to broadcast a valid signed transaction to the network.

Parameters:

1.48. Usage 211

Dash Platform, Release latest

parameters type re-
quired

Description

transaction Buffer yes A valid Buffer representation of a transaction
options Ob-

ject
op-
tions.allowHighFees

Booleanno[=false]As safety measure, “absurd” fees are rejected when considered to high. This
allow to overwrite that comportement

op-
tions.bypassLimits

Booleanno[=false]Allow to bypass default transaction policy rules limitation

Returns : transactionId (string).

N.B : The TransactionID provided is subject to transaction malleability, and is not a source of truth (the transaction
might be included in a block with a different txid).

generateToAddress

Usage: await client.core.generateToAddress(blockMumber, address, options)
Description: Allow to broadcast a valid signed transaction to the network.
Notes: Will only works on regtest.

Parameters:

parameters type required Description
blocksNumber Number yes A number of block to see generated on the regtest network
address String yes The address that will receive the newly generated Dash
options DAPIClientOptions no

Returns : {Promise<string[]>} - a set of generated blockhashes.

getBestBlockHash

Usage: await client.core.getBestBlockHash(options)
Description: Allow to fetch the best (highest/latest block hash) from the network

Parameters:

parameters type required Description
options DAPIClientOptions no

Returns : {Promise} - The best block hash

212 Chapter 1. Platform docs

https://docs.dash.org/projects/core/en/stable/docs/guide/transactions-transaction-malleability.html

Dash Platform, Release latest

getBlockByHash

Usage: await client.core.getBlockByHash(hash, options)
Description: Allow to fetch a specific block by its hash

Parameters:

parameters type required Description
hash String yes A valid block hash
options DAPIClientOptions no

Returns : {Promise<null|Buffer>} - The specified bufferized block

getBlockByHeight

Usage: await client.core.getBlockByHeight(height, options)
Description: Allow to fetch a specific block by its height

Parameters:

parameters type required Description
height Number yes A valid block height
options DAPIClientOptions no

Returns : {Promise<null|Buffer>} - The specified bufferized block

getBlockHash

Usage: await client.core.getBlockHash(height, options)
Description: Allow to fetch a specific block hash from its height

Parameters:

parameters type required Description
height Number yes A valid block height
options DAPIClientOptions no

Returns : {Promise<null|string>} - the corresponding block hash

getMnListDiff

Usage: await client.core.getMnListDiff(baseBlockHash, blockHash, options)
Description: Allow to fetch a specific block hash from its height

Parameters:

1.48. Usage 213

Dash Platform, Release latest

parameters type required Description
baseBlockHash String yes hash or height of start block
blockHash String yes hash or height of end block
options DAPIClientOptions no

Returns : {Promise} - The Masternode List Diff of the specified period

getStatus

Usage: await client.core.getStatus(options)
Description: Allow to fetch a specific block hash from its height

Parameters:

parameters type required Description
options DAPIClientOptions no

Returns : {Promise} - Status object

const status = await client.core.getStatus()
/**
{
coreVersion: 150000,
protocolVersion: 70216,
blocks: 10630,
timeOffset: 0,
connections: 58,
proxy: '',
difficulty: 0.001745769130443678,
testnet: false,
relayFee: 0.00001,
errors: '',
network: 'testnet'

}
**/

getTransaction

Usage: await client.core.getTransaction(id, options)
Description: Allow to fetch a transaction by ID

Parameters:

parameters type required Description
id string yes A valid transaction id to fetch
options DAPIClientOptions no

Returns : {Promise<null|Buffer>} - The bufferized transaction

214 Chapter 1. Platform docs

Dash Platform, Release latest

subscribeToTransactionsWithProofs

Usage: await client.core.subscribeToTransactionsWithProofs(bloomFilter, options = { count:
0 })
Description: For any provided bloomfilter, it will return a ClientReadableStream streaming the transaction matching
the filter.

Parameters:

parameters type required Description
bloomFil-
ter.vData

Uint8Array/Arrayyes The filter itself is simply a bit field of arbitrary byte-aligned size.
The maximum size is 36,000 bytes.

bloomFil-
ter.nHashFuncs

Number yes The number of hash functions to use in this filter. The maximum
value allowed in this field is 50.

bloomFil-
ter.nTweak

Number yes A random value to add to the seed value in the hash function used
by the bloom filter.

bloomFil-
ter.nFlags

Number yes A set of flags that control how matched items are added to the filter.

op-
tions.fromBlockHash

String yes Specifies block hash to start syncing from

op-
tions.fromBlockHeight

Number yes Specifies block height to start syncing from

options.count Number no (de-
fault: 0)

Number of blocks to sync, if set to 0 syncing is continuously sends
new data as well

Returns : Promise|!grpc.web.ClientReadableStream<!TransactionsWithProofsResponse>

Example :

const filter; // A BloomFilter object
const stream = await client.subscribeToTransactionsWithProofs(filter, { fromBlockHeight:␣
→˓0 });

stream
.on('data', (response) => {
const merkleBlock = response.getRawMerkleBlock();
const transactions = response.getRawTransactions();

if (merkleBlock) {
const merkleBlockHex = Buffer.from(merkleBlock).toString('hex');

}

if (transactions) {
transactions.getTransactionsList()

.forEach((tx) => {
// tx are probabilistic, so you will have to verify it's yours
const tx = new Transaction(Buffer.from(tx));

});
}

})
.on('error', (err) => {

// do something with err
});

1.48. Usage 215

Dash Platform, Release latest

1.48.3 Platform

broadcastStateTransition

Usage: async client.platform.broadcastStateTransition(stateTransition, options)
Description: Send State Transition to machine

Parameters:

parameters type required Description
stateTransition Buffer yes A valid bufferized state transition
options DAPIClientOptions no A valid state transition

Returns : Promise<!BroadcastStateTransitionResponse>

getDataContract

Usage: async client.platform.getDataContract(contractId)
Description: Fetch Data Contract by id

Parameters:

parameters type required Description
contractId String yes A valid registered contractId

Returns : Promise

getDocuments

Usage: async client.platform.getDocuments(contractId, type, options)
Description: Fetch Documents from Drive

Parameters:

parameters type required Description
contractId String yes A valid registered contractId
type String yes DAP object type to fetch (e.g: ‘preorder’ in DPNS)
options.where Object yes Mongo-like query
options.orderBy Object yes Mongo-like sort field
options.limit Number yes Limit the number of object to fetch
options.startAt Number yes number of objects to skip
options.startAfter Number yes exclusive skip

Returns : Promise<Buffer[]>

216 Chapter 1. Platform docs

Dash Platform, Release latest

getIdentity

Usage: async client.platform.getIdentity(id)
Description: Fetch the identity by id

Parameters:

parameters type required Description
id String yes A valid registered identity

Returns : Promise<!Buffer|null>

getIdentityByFirstPublicKey

Usage: async client.platform.getIdentityByFirstPublicKey(publicKeyHash)
Description: Fetch the identity using the public key hash of the identity’s first key

Parameters:

parameters type required Description
publicKeyHash String yes A valid public key hash

Returns : Promise<!Buffer|null>

getIdentityIdByFirstPublicKey

Usage: async client.platform.getIdentityIdByFirstPublicKey(publicKeyHash)
Description: Fetch the identity ID using the public key hash of the identity’s first key

Parameters:

parameters type required Description
publicKeyHash String yes A valid public key hash

Returns : Promise<!Buffer|null>

1.48. Usage 217

	Platform docs
	What is Dash
	Key Advantages
	Industry Leading Security
	Stable and Long Lasting Governance
	Established History of Technological Innovation
	Instantly Confirmed Transactions

	Key Features
	Masternodes
	Long-Living Masternode Quorums
	InstantSend
	ChainLocks
	Proof-of-Service

	What is Dash Platform
	Key Advantages
	Decentralized Cloud Storage
	Reduced Data Silos
	Client Libraries
	Instant Data Confirmation

	Key Components
	DAPI - A decentralized API
	Drive - Decentralized Storage

	Intro to Testnet
	Network Details
	Infrastructure
	Features

	Getting involved

	Introduction
	Prerequisites
	Quickstart

	Connect to a network
	Overview
	Prerequisites
	Connect via Dash SDK
	1. Install the Dash SDK
	2. Connect to Dash Platform

	Connect to a Devnet
	Connect via Seed
	Connect via Address

	Connect Directly to DAPI (Optional)

	Create and fund a wallet
	Prerequisites

	Code
	What’s Happening
	Next Step
	Identities and names
	Register an Identity
	Overview
	Prerequisites

	Code
	What’s Happening

	Retrieve an identity
	Prerequisites

	Code
	Example Identity
	What’s Happening
	Topup an identity’s balance
	Overview
	Prerequisites

	Code
	What’s Happening
	Update an identity
	Prerequisites
	Code
	What’s Happening
	Disabling keys
	Adding keys

	Retrieve an account’s identities
	Prerequisites

	Code
	What’s Happening
	Register a name for an identity
	Overview
	Prerequisites

	Code
	What’s Happening

	Retrieve a name
	Prerequisites
	Code
	Example Name
	What’s Happening

	Contracts and documents
	Register a data contract
	Prerequisites

	Code
	Defining contract documents
	Registering the data contract

	What’s Happening
	Retrieve a data contract
	Prerequisites

	Code
	Retrieving a data contract
	Updating the client app list

	Example Data Contract
	What’s Happening
	Update a data contract
	Prerequisites

	Code
	What’s Happening
	Submit documents
	Prerequisites

	Code
	What’s happening
	Retrieve documents
	Prerequisites

	Code
	Queries

	Example Document
	What’s happening
	Update documents
	Prerequisites

	Code
	What’s happening
	Delete documents
	Prerequisites

	Code
	What’s happening

	Send funds
	Code
	What’s Happening
	Use DAPI client methods
	Prerequisites

	Code
	Set up a node
	Dash masternode
	Prerequisites
	Local Network
	Setup
	Operation
	Mining Dash
	Using the network

	Testnet Masternode Setup
	Remote Development Network

	Dash Core full node
	Config File
	Starting Dash Core

	Decentralized API (DAPI)
	Overview
	Security
	Endpoint Overview

	Platform Protocol (DPP)
	Overview
	Structure Descriptions
	Data Contract
	Document
	State Transition

	Versions
	Data Contract
	Overview
	Details
	Ownership
	Structure
	Registration
	Updates

	Example Contract

	State Transition
	Overview
	Implementation Overview
	Structure
	Application Usage

	Document
	Overview
	Details
	Base Fields
	Data Contract Fields
	Example Document

	Document Submission
	Document Create
	Document Replace
	Document Delete

	Data Trigger
	Overview
	Details

	Identity
	Overview
	Identity Management
	Identity Create Process
	Identity Balance Topup Process
	Identity Update Process
	Masternode Identities

	Credits

	Name Service (DPNS)
	Overview
	Relationship to identities

	Details
	Name Registration Process
	Implementation
	Contract Diagram

	Drive
	Overview
	Details
	Drive Components
	Data Update Process
	Platform Chain
	Overview
	Details
	Evolution of design
	Characteristics
	Blocks and Transitions

	Platform State

	Platform Consensus
	Tendermint
	Tendermint Limitations

	Tenderdash
	Dynamic Validator Set Rotation

	How Does Tenderdash Differ From Tendermint?

	DashPay
	Overview
	Details
	Establishing a Contact
	Implementation

	Fees
	Overview
	Costs
	Fee Multiplier
	Storage Refund
	User Tip
	Formula

	DAPI Endpoints
	JSON-RPC Endpoints
	gRPC Endpoints
	Core gRPC Service
	Platform gRPC Service
	JSON-RPC Endpoints
	Overview
	Required Parameters
	Endpoint Details
	getBestBlockHash
	Example Request and Response
	getBlockHash
	Example Request and Response
	getMnListDiff
	Example Request and Response
	Deprecated Endpoints
	Code Reference

	gRPC Overview
	Connecting to gRPC
	Auto-generated Clients
	Command Line Examples
	Data Encoding

	Core gRPC Endpoints
	Endpoint Details
	broadcastTransaction
	Example Request and Response
	getStatus
	Example Request and Response
	getBlock
	Example Request and Response
	getTransaction
	Example Request and Response
	subscribeToBlockHeadersWithChainLocks
	subscribeToTransactionsWithProofs
	Deprecated Endpoints
	Code Reference

	Platform gRPC Endpoints
	Data Proofs and Metadata
	Endpoint Details
	broadcastStateTransition
	getIdentity
	getIdentitiesByPublicKeyHashes
	getDataContract
	getDocuments
	waitForStateTransitionResult
	Deprecated Endpoints
	Code Reference

	Query Syntax
	Overview
	Where Clause
	Fields
	Comparison Operators
	Equal
	Range

	Array Operators
	Evaluation Operators
	Operator Examples

	Query Modifiers
	Example query

	Data Contracts
	Overview
	Documents
	Document Properties
	Special requirements for object properties
	Property Constraints
	Required Properties (Optional)

	Document Indices
	Index Constraints

	Full Document Syntax

	Definitions
	General Constraints
	Keyword
	Data Size
	Additional Properties

	Glossary
	Application
	Application State
	Block
	Block Reward
	ChainLock
	Classical Transactions
	Coinbase Transaction
	Core Chain
	Credits
	DAPI
	DAPI Client
	DashPay
	DashPay Contact Request
	DashPay Contact Info
	DashPay Profile
	Dash Core
	Data Contract
	Dash Platform Application
	Dash Platform Naming Service (DPNS)
	Dash Platform Protocol (DPP)
	Decentralized Autonomous Organization (DAO)
	Devnet
	Direct Settlement Payment Channel (DSPC)
	Distributed Key Generation (DKG)
	Document
	Drive
	Layer (1, 2, 3)
	Local network
	Long Living Masternode Quorum (LLMQ)
	Mainnet
	Masternode
	Platform Chain
	Platform State
	practical Byzantine Fault Tolerance (pBFT)
	Proof of Service (PoSe)
	Proof of Work (PoW)
	Quorum
	Quorum Signature
	Regtest
	Simple Payment Verification
	Special Transactions
	State Machine
	State Transition
	Tenderdash
	Testnet
	Validator Set

	Frequently Asked Questions
	What is Evolution?
	How does a DAPI client discover the IP address of masternodes hosting DAPI endpoints?
	Why can’t I connect to DAPI from a page served over HTTPS?
	Will it be possible to use apps with only an identity, or will a DPNS name have to be registered first?
	Should it be possible to create multiple identities using a single private key?
	Will DAPI RPCs always be free? How will DoS attacks be mitigated?
	When I try to load the Dash javascript library, why is there is a syntax error “Invalid regular expression”?

	Overview
	Introduction
	Reference Implementation
	Release Notes
	Topics

	Identity
	Identity Overview
	Identity id
	Identity publicKeys
	Public Key id
	Public Key type
	Public Key data
	Public Key purpose
	Public Key securityLevel
	Public Key readOnly
	Public Key disabledAt

	Identity balance

	Identity State Transition Details
	Identity Creation
	Identity TopUp
	Identity Update
	Asset Lock
	InstantSend Asset Lock Proof
	ChainLock Asset Lock Proof

	Identity State Transition Signing
	Code snipits related to signing

	Data Contract
	Data Contract Overview
	General Constraints
	Keyword
	Data Size
	Additional Properties

	Data Contract Object
	Data Contract Schema
	Data Contract id
	Data Contract version
	Data Contract Documents
	Document Properties
	Property Constraints
	Required Properties (Optional)

	Document Indices
	Index Constraints

	Full Document Syntax
	Document Schema

	Data Contract Definitions

	Data Contract State Transition Details
	Data Contract Creation
	Data Contract Update
	Data Contract State Transition Signing

	State Transition
	State Transition Overview
	Fees
	Size
	Common Fields

	State Transition Types
	Data Contract Create
	Entropy Generation

	Data Contract Update
	Documents Batch
	Identity Create
	Identity TopUp
	Identity Update

	State Transition Signing
	Signature Validation

	Document
	Document Submission
	Document Base Transition
	Document id
	Document Transition Action

	Document Create Transition
	Document Replace Transition
	Document Delete Transition
	Example Document Batch State Transition

	Document Object
	Example Document Object

	Data Trigger
	Data Trigger Overview
	Details
	Example

	Consensus Errors
	Platform Error Codes
	Basic
	Decoding Errors
	Structure Errors
	Data Contract Errors
	Document Errors
	Identity Errors
	State Transition Errors

	Signature Errors
	Fee Errors
	State
	Data Contract Errors
	Document Errors
	Identity Errors
	Data Trigger Errors

	Repository Overview
	js-dash-sdk
	js-dapi-client
	dapi
	js-dpp
	Supporting Repositories
	drive
	dashcore-lib
	grove-db
	wallet-lib
	dapi-grpc
	dash-network-deploy
	platform-test-suite
	rs-drive
	dashmate

	Contract Repositories
	dashpay-contract
	dpns-contract

	Source Code
	Overview
	Install
	From NPM
	From unpkg
	Usage examples
	Dash Platform Tutorials

	Licence

	Examples
	Fetching an identity from its name
	Generate a new mnemonic
	Dash.Client
	Dash.Mnemonic
	Language selection
	Entropy size

	Paying to another address
	Receive money and display balance
	Initialize client
	Generate a receiving address
	Displaying your balance
	Listen for event on received transaction
	Get address at specific index

	Sign and verify messages
	Using a different account

	Getting started
	About Schemas
	Core concepts
	Wallet
	Account
	App Schema and Contracts

	Dash Platform applications
	DPNS
	DashPay

	Working with multiple apps
	Quick start
	Initialization
	Make a payment
	Interact with Dash Platform

	TypeScript

	Platform
	Platform components
	Contracts
	What is a contract
	Create
	Get
	Publish
	Update

	Documents
	What is a document
	Broadcast
	Create
	Get

	Identities
	What is an identity
	Credits
	Get
	Register
	Topup

	Names
	What is DPNS
	Register
	Resolve
	ResolveByRecord
	Search

	Usage
	DAPI
	About DAPI
	Get the DAPI-Client instance

	Dashcore Lib primitives
	Transaction
	Address
	Block
	UnspentOutput
	HDPublicKey
	HDPrivateKey
	PublicKey
	PrivateKey
	Mnemonic
	Network
	Script
	Input
	Output

	Wallet
	About Wallet-lib
	Accounts
	Getting an account

	Signing and encryption
	Obtain account
	Sign a Transaction
	Encrypt a message
	Decrypt a message

	Overview
	DAPI-Client
	Install
	ES5/ES6 via NPM
	CDN Standalone

	Licence

	Quick start
	ES5/ES6 via NPM
	CDN Standalone
	Initialization
	Quicknotes

	Usage
	DAPIClient
	Core
	broadcastTransaction
	generateToAddress
	getBestBlockHash
	getBlockByHash
	getBlockByHeight
	getBlockHash
	getMnListDiff
	getStatus
	getTransaction
	subscribeToTransactionsWithProofs

	Platform
	broadcastStateTransition
	getDataContract
	getDocuments
	getIdentity
	getIdentityByFirstPublicKey
	getIdentityIdByFirstPublicKey

